

NOZZLE CHECK VALVES Technical Catalogue

www.noreva.de

NOREVA Company History & Overview

The company Noreva GmbH (Non Return Valves) was founded in August 2001 and started with 9 employees who were formerly working for Mannesmann Demag, the inventor of the nozzle check valve in 1935.

Noreva has continuously grown and currently has a staff of 55. All of these employees have many years experience with non-slam check valves. With our track record of supply, Noreva has developed an enviable reputation for quality and reliability of product at internationally competitive prices.

Since 2007 Noreva has been part of Goodwin PLC group of companies.

Noreva is located in the industrial area of Mönchengladbach in Germany. Few valves are sold from stock, the majority of our production is tailor-made to customer specification.

All Noreva non-slam check valves are characterised by non-slam closure, low pressure loss, metal-to-metal sealing and are considered maintenance free.

You will find Noreva check valves all over the world (Average export rate 75%), whether liquid or gaseous fluids, in different applications such as oil pipelines, chemical plants, compressor stations, power plants, water pumping stations, desalination plants, etc.

Noreva GmbH, Moenchengladbach, Germany

Goodwin Steel Castings, Stoke-on-Trent, UK

Goodwin International, Stoke-on-Trent, UK

www.noreva.de

Contents

NOZZLE CHECK VALVE ADVANTAGES

Energy Saving

Typically, systems are operated at low flow rates to minimise pressure losses and maximise plant efficiencies. To help operators achieve this, Noreva nozzle check valves can be fully open at a flow velocity of 1.5m/s, ensuring minimal pressure drop across the valve.

Non-Slamming

The high economic efficiency of our nozzle check valves is a result of very low pressure losses and the maintenance-free design. Due to short strokes and low moving masses supported by helical springs the valves close slam-free within fractions of seconds.

Maintenance Free

The Noreva Nozzle Check Valve designs use no soft parts. Also as there are no wearing parts, it is considered maintenance free. The springs are sized according to the flow rates to ensure that the valves are in the fully open position during normal use. This minimises cycling of the spring, giving the valves a long design life without regular maintenance.

Horizontal or Vertical

Lightweight discs and spring assisted closure combine to allow the Noreva Nozzle Check Valve to maintain the same high performance regardless of vertical or horizontal installation.

Reproduction of this catalogue, either in print or electronically, whole or in part, must be with the express permission of NOREVA GmbH.

As part of our continuous product improvement policy we reserve the right to institute changes in any materials, designs and specifications within this catalog.

- 2 Facilities & Resources
- 4 Certification & Testing

NOZZLE CHECK VALVES

- 7 Valve Overview
- 8 Technical Features & Benefits
- 10 Types

DIMENSIONS

- 11 Type ZB & NB Exploded Views
- 12 Type ZB/ZD
- 14 Type NB/ND
- 16 Type NK
- 18 Special Application
- 19 Type NZ, ZO & NG Exploded Views
- 20 Type NZ/NA
- 22 Type NC
- 24 Type ZO/ZL
- 26 Type NG

ENGINEERING DATA

- 27 Installation Between End Connections
- 28 End Connections
- 29 Flow Co-Efficients
- 30 Pressure Loss
- 31 Critical Velocity
- 32 Phenomenon of Surge
- 33 Check Valve Selection
- 34 Total Life Cycle Costs
- 35 Best Practice Valve Installation
- 36 Material Specifications
- 37 ASME Pressure / Temperature Ratings
- 38 Large Diameter Check Valves
- 39 Cryogenic Testing
- 40 Certification & Approvals
- 41 Ordering Instructions

NOREVA, GOODWIN INTERNATIONAL, GOODWIN STEEL CASTINGS Facilities & Resources

Noreva GmbH's manufacturing plant in Möenchengladbach, Germany, comprises a well equipped manufacturing shop with full design, fabrication, inspection and test facilities. These facilities are complemented by our sister companies, Goodwin International Ltd. and Goodwin Steel Castings Ltd. in Stokeon-Trent, England. Goodwin International comprises a fully equipped CNC machine shop and also full design, fabrication, inspection and test facilities. Goodwin Steel Castings is a world class foundry. It was the first steel foundry worldwide to be registered by the British Standards Institution to BS5750 (now BS EN ISO 9001:2008) and is now also accredited to ISO14000:2004 and OHSAS 18000:2007.

Noreva's EN ISO 9001-2008 accredited design, machine, test and assembly bay cover some 7000 m². The shop is equipped with conventional machines, the majority of our machining is outsourced to local machine shops.

Valve design is carried out using 3D CAD and is verified utilizing finite element analysis. Our test facilities include 5 hydraulic test rigs for hydrostatic and pneumatic pressure testing. The largest can test valves up to 72".

Noreva has a large conventional liquid coating facility and has just installed and commissioned a state-of-the-art fusion bonded epoxy coating booth to serve the global water market.

Goodwin International

Goodwin International's BS EN ISO 9001-2008 accredited design, machine, test and assembly bays cover some 22,000 m². The machine shop is equipped with 36 modern CNC machine tools, including robotic welding, which are the core of the valve production. These are further supplemented by a large number of conventional machine tools.

The test facilities include six hydraulic hydrostatic test rigs, the largest of which has a 2500 tonne hydraulic ram and can test valves up to 60". Cryogenic testing is also carried out on site where valves are submerged in liquid nitrogen at -196°C and leak tested with helium gas.

Goodwin Steel Castings

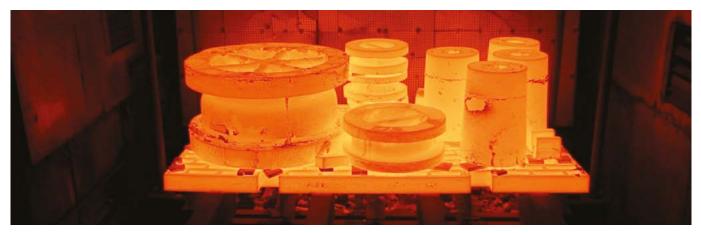
Specialising in producing high integrity pressure vessel castings from a few kilos to 18,000 kg in weight, the materials cast by Goodwin Steel Castings include carbon and low alloy steels, chrome steels, stainless steels, duplex stainless steels and super nickel alloys such as Hastelloy[®] and Alloy 625. Its ability to produce the special alloys is enhanced by its in-house 10 tonne AOD refining furnace.

CNC vertical lathe

Hydraulic/Pneumatic pressure test bench

Warehouse

Two station CNC vertical borer with live spindle and tool changer


Goodwin Steel Castings models all cast valve bodies using SOLIDWORKS[®] 3D Modelling. Casting methods are verified, i.e. method verification, using Magmasoft[™] software.The Magmasoft[™] program includes fluid dynamics, temperature profile, and x-ray simulation to predict where volumetric defects will occur in a given casting. Using this software enables defects to be "engineered out" by developing casting feeding and gating designs to ensure "right first time" production of high integrity castings. This optimisation process is a key feature of Goodwin Steel Castings' Quality Assurance System.

Cryogenic test facility for helium leak testing

AOD refining allows Goodwin Steel Castings to manufacture castings in a wide range of materials including Carbon, Stainless and Duplex steels and Super Nickel Alloys.

Goodwin Steel Castings has extensive on-site gas fired heat treatment furnaces, with a capacity of 50 tonnes to a temperature of 1,300°C. Cooling can be air, forced air or water quench as shown above.

NOREVA Certification & Testing

A Quality Management System in accordance with EN ISO 9001:2008 is maintained.

The Standard NOREVA Check Valve features:-

- Designed, manufactured, assembled and tested in accordance with Quality Assurance System EN ISO 9001:2008.
- All bodies and discs certified to EN 10204 3.1 as a minimum.
- All new castings are sample approved by dimensional checks (wall thickness etc.) and radiography, 100% coverage to ASTM E446/E186, Level 2 minimum, or ultrasonic testing to ASTM A609, Level "A".
- Surface finish to MSS SP 55 on cast components.
- All valves are hydrostatically tested (Shell and Seat) to API 598 with unique traceability to certification.
- Additional testing to be specified on the inquiry and Purchase Order.

Extensive in-group testing and laboratory facilities are available including:

- Hydrostatic Pressure Testing to 25000 psig (1725 barg)
- High Pressure Gas Testing to 15000 psig (1035 barg)
- Low Temperature (-46°C) and cryogenic temperature (-196°C) Pressure Testing
- High Temperature Pressure Testing to 550°C
- Helium Leak Testing (Mass Spectrometer)
- Tensile / Bend / Impact / Hardness Testing
- Corrosion Testing
- Metallography
- Magnetic Particle
- Dye Penetrant
- Ultrasonic Examination
- Radiography
- Chemical Analysis
- Alloy Verification / Positive Material Identification (PMI)
- Co-ordinate Measuring Machines (CMM)
- Feritscope Verification
- Laser Measurement

Other examination methods or acceptance criteria to comply with the customer's own specification may be substituted if agreed with the Company at the time of quotation.

Radiography

Radiography is conducted in-group using 9 MeV Linear Accelerator X-Ray machine with developing and viewing facilities.

- Method ASME V Art 2 or ASME B16.34 App 1
- Options 100% of all castings 100% of 10% of castings Critical Areas* of all castings Critical Areas* of 10% of castings
- Acceptance ASME VIII Div 1 App 7 or ASME B16.34 App 1

*Critical Areas as defined by ASME B16.34

The group's operators for all forms of Non-Destructive Testing are qualified to ASNT Level 2 or PCN Level 2.

Magnetic Particle / Dye Penetrant

- Method MPI to ASME V Art 7 or ASME B16.34 App II DPI to ASME V Art 6 or ASME B16.34 App III Options 1. 100% of all castings/forgings
 - 2. 100% of 10% of castings/forgings
 3. 100% of all machined surfaces
- Acceptance MPI to ASME VIII Div 1 App 7 or ASME B16.34 App II DPI to ASME VIII Div 1 App 7 or ASME B16.34 App III
- Ultrasonic Examination
- Method ASME V Art 5 or ASME B16.34 App IV
- Options 1. 100% of all castings/forgings
 - 2. 100% of 10% of castings/forgings
 - 3. Critical Areas* of all castings/forgings
 - 4. Critical Areas* of 10% castings/forgings
- Acceptance ASME B16.34 App IV

*Critical Areas as defined by ASME B16.34

Chemical Analysis

- Routine chemical analysis by one of two optical emission spectrometers: Hilger 28 Channel Spectrometer and ARL 35 channel spectrometer
- Carbon, Sulphur, Nitrogen and Hydrogen determination by a combination of Leco and Eltra combustion analysers
- Oxygen determination by Celox direct measurement
- Portable PMI (Positive Material Identification) by XRF hand held analyser
- Typical material analysed:
 - Carbon/Low Alloy Steels/Chrome Steels
 - Stainless/Duplex/6Mo Steels
 - Nickel alloys
 - Cobalt alloys

Corrosion Testing & Metallography

- Intercrystalline corrosion
- Strauss and Huey tests
- Crevice corrosion
- Pitting corrosion
- Typical Standards ASTM G48, A262, G31, G36, A923
- Ferrite counting
- Phase checks
- Grain size/inclusion counts
- Macro and Micro photography
- Typical Standards ASTM E562, E112, E45

Magnetic Particle / Dye Penetrant

Ultrasonic Examination

Chemical Analysis

Corrosion Testing & Metallography

New Noreva Valve Test Bench - Europe's biggest valve testing bench

During the early months of spring this year the company Noreva, which is located in Mönchengladbach (Germany), has started with the construction of Europe's biggest valve testing bench. Towering in the workshop with a height of 6.5 metres and a total length of around 15 metres this valve test bench is capable of performing pressure tests on valves all the way up to DN 2000 (80") and a maximum face to face length of 2.5 metres. This test bench is able to build up 3,500 tons of clamping pressure for the pressure tests.

In addition to these rather big numbers, the test bench can boast with a small one as well. Due to the efficiency of the Dutch construction (the company Ventil has designed and supplied the test bench) the total testing time will be cut down to nothing more than 2 hours, including mounting and dismounting the valves on the bench.

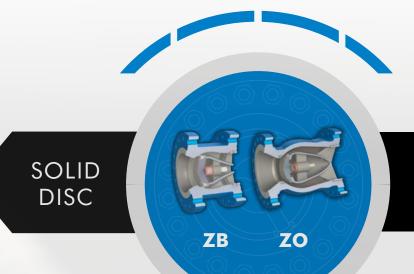
Valve Testing Bench

New Noreva Fusion Bonded Epoxy Coating Facility

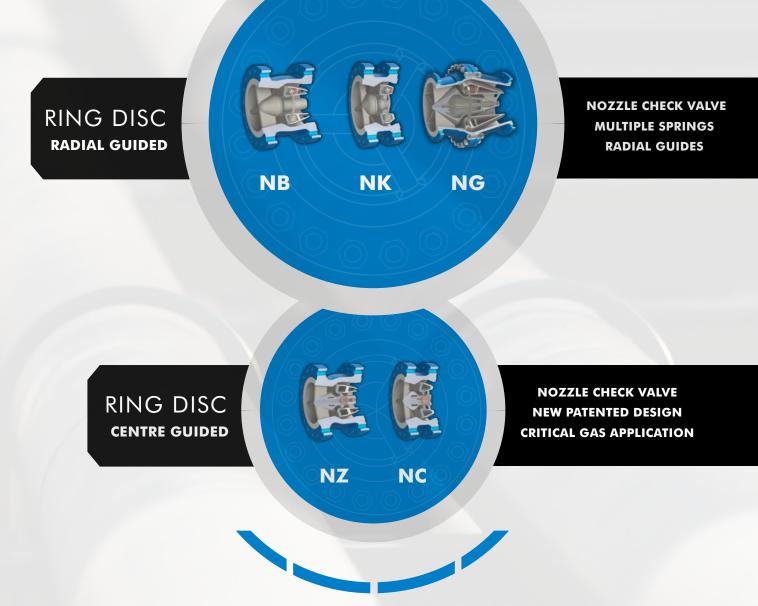
Being a worldwide manufacturer for potable water valves, the company Noreva has decided to commission a brand new, state of the art fusion bonded epoxy coating facility.

With construction work finished in 2015, Noreva has been able to shorten delivery times and further exceed in quality, due to the efficiency of the facility itself. All steps for the manufacturing process for the coating can now be applied at Noreva directly, for all valve parts weighing less than 10 tons.

The process starts with thorough sand blasting the components of the valve. Afterwards the components are heated up to 250 degrees Celsius and then transported to the coating station itself, where epoxy particles are melted onto the heated parts.


After cooling down, the valve will have a smooth and continuous surface, suited for all kinds of potable water applications.

The standard material used for coating is supplied by AkzoNobel under the name Resicoat R4, which fulfills all required potable water standards.



FBE Facility

NOZZLE CHECK VALVES VALVE TYPE SOLUTIONS

NOZZLE CHECK VALVE SINGLE SPRING PISTON TYPE

NOZZLE CHECK VALVES **Technical Features & Benefits**

Low Pressure Loss

The streamlined internals of the axial check valve range allow for a turbulence free flow path around the disc in the Type Z valve or through and around the disc in the Type N valves.

The high capacity, smooth flow path results in low pressure drop across all of the Axial type valves with exceptionally low pressure drop in the ZB and the NB range.

Low pressure loss can be equated with energy savings in the plant or more throughput, making the axial type valve a competitive check valve solution when considering full lifecycle costs.

Space & Weight Savings

The short face-to-face dimensions of the NK compact design allows for installation in applications where space and weight are at a premium, such as offshore platforms and FPSOs.

The NK type, with its reduced body length and its consequent reduced weight, offers significant cost savings compared with the long pattern NB and ND types. The savings in capital purchase costs are further complimented by low lifecycle cost afforded by the low pressure loss ring disc.

The NK type is Noreva's standard when supplying sizes 12" and larger and is available with Flanged, Wafer, Solid Lug, Hub End and Buttweld End connections.

Choice of Face-to-Face Lengths

The Noreva Axial Check Valves are available in three standard lengths.

NC, NK, ZS Noreva Standard Compact Face to Face NZ, NG, NB, ZB, ZO Noreva Standard Face to Face NA, ND, ZD API 6D Face to Face ZL DIN558 Face to Face

Maintenance Free

The Noreva Axial Check Valve designs use no soft parts and are therefore inherently fire-safe. Also, as there are no wearing parts, it is considered maintenance free. The springs are sized according to the flow rates to ensure that the valves are in the fully open position during normal use. This minimises cycling of the spring, giving the valves a long design life without the need for regular maintenance.

NK Standard Short Face-to-Face

NB Standard Face-to-Face

Optimised Disc Designs

The Noreva Non-Slam Axial Check valve has two disc designs, depending upon size of valve.

Solid Disc

Available in sizes 1" through to 10", the Noreva Type Z valve is a solid disc and shaft type. The axial design allows for a streamlined flow path around the disc and high pressure recovery, minimising pressure drop across the valve. A short stroke length provides the quick response required by a Non-Slam check valve

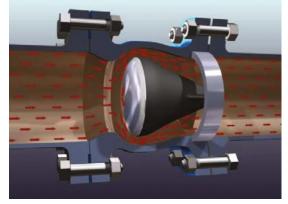
Ring Disc

The Ring Disc design, Type N Valve, in sizes 12" and above ensures that the disc remains light and responsive even in large sizes. Mounted on a multiple helical spring and radial guide assembly, (type NB/ NK) or a shaft with a single, centrally mounted, spring (type NZ/NC), the disc moves freely without any of the frictional forces associated with the solid disc and shaft design.

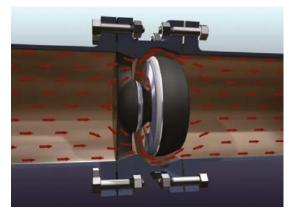
With a flow path both around and through the centre of the disc the flow capacity of the valve is best in class. Due to the excellent pressure recovery properties of the diffuser, the minimal pressure drop across the valves gives lifetime energy savings when compared to more conventional check valve designs.

Noreva's NZ and NC valves are specially designed for gas applications having a centrally guided, single spring with very low fully open velocity.

Centre Guided Ring Disc


For the design of our newly developed Type NZ & NC valve, we have focused on laying the centre of gravity of our only moving part, the disc, over the centre of the surface it is sliding on.

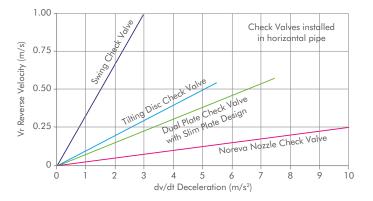
Due to the design change we are able to use softer springs, which function at very low flow rates, mainly because we have eliminated the tilting effect of the moving component all together.


Non-Slam: Quick Response

Low weight discs, short stroke lengths and spring assistance combine to ensure that the Axial type check valve responds quickest to change in flow direction.

This fast response ensures reverse velocity cannot build up to a level that can damage pumps, pipes or related equipment. As pressure surges can occur when a valve is closed against a moving body of fluid, the quick closure results in a considerably lower pressure peak than with other types of check valve.

Solid Disc Flow Diagram



Ring Disc Flow Diagram

Centre of Gravity

Dynamic Response Curve Comparison

NOZZLE CHECK VALVES Valve Types - General Applications

Type Z

Size range: 1" - 10" (DN 25 - DN 250) Pressure Class: PN 10 - PN 400, ASME 150 - ASME 4500, API 2000 - API 20000

- Non-slam closure
- Low pressure loss Low weight
- Metal sealing

- Choice of face-to-face length
- - Maintenance free

The axial design allows for a streamlined flow path around the disc and high pressure recovery, minimising pressure drop across the valve. This efficient design combined with the highly responsive non-slam operation make this valve ideal for high head, critical pump applications.

Type ZB - The ZB is the standard valve for sizes 1" - 10". Its optimum designed aerodynamic flow path through the valve results in very low pressure losses. It is also available with API 6D face-to-face dimensions (ZD).

Type ZS - With a shorter face-to-face (wafer type) than the ZB and where pressure loss across the valve is not such a significant consideration, the ZS is installed where space and weight is at a premium. This type is only available on special request.

The Z range is suitable for all kinds of liquid and gaseous fluids and all installation positions.

Type N

Size range: 12" - 88" (DN 300 - DN 2200) Pressure Class: PN 10 - PN 400, ASME 150 - ASME 4500, API 2000 - API 20000

- Non-slam closure
- Very low pressure loss
 Metal sealing
 - Low weight

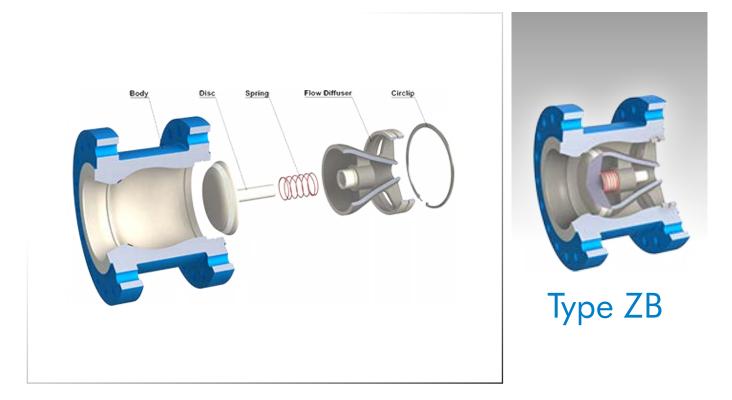
- Friction-free valve disc guiding Choice of face-to-face length
- Maintenance free

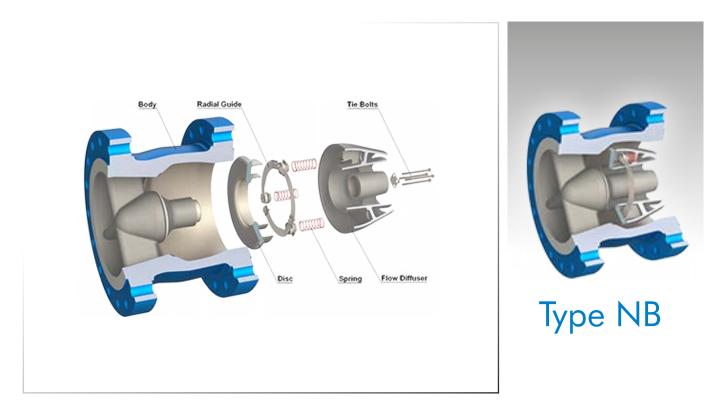
The unique ring disc design ensures that the disc remains light and responsive even in large sizes, which is essential for rapid non-slam closure. Mounted on a multiple spring and radial guide assembly, the disc moves freely without the frictional forces. Combining two ring-shaped annular flow paths with the excellent pressure recovery properties provided by the diffuser, the minimal pressure drop across the Type N valves gives lifetime energy savings when compared to more conventional check valve designs.

Type NB - The NB is the Noreva standard long face to face for 12" and larger, providing optimum pressure recovery performance and, hence minimum pressure loss. It is also available with API 6D face-to-face dimensions (ND).

Type NK - Providing the customer a shorter face-to -face length and reduced weight, the NK is the Noreva standard lower cost solution where marginally higher pressure drops can be accepted.

The N range is suitable for all kinds of liquid and gaseous fluids and all installation positions.


ZB


NB

NK

TYPE ZB & NB

The above two valve designs are Noreva's standard offering for sizes 1" to 10" Type ZB and 12" and larger Type NB.

Type ZB & ZD Installation Dimensions

Flanges according to ASME B16.5

				Typ e Standard F	e ZB ace-to-Face	API	Type ZD 6D Face-to-	Face		FLA	NGE DE		
Size	Pressure	End	Α	В	+ Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
inches	Rating ASME	Facing	mm	mm	Weight kg	RF mm	RJ mm	Weight kg	P.C.D. mm	DIA. mm	No.	DIA. Inches	*Length mm
	150	RF	110	100	4				79.4	15.8	4	1/2	85
	300	RF	125	100	4				88.9	19.1	4	5/8	95
1	600	RF/RJ-16	125	100	5				88.9	19.1	4	5/8	100
(25mm)	900	RF/RJ-16	150	150	9				101.6	25.4	4	7/8	140
	1500	RF/RJ-16	150	150	16				101.6	25.4	4	7/8	140
	2500	RF/RJ-18	160	160	28				108.0	25.4	4	7/8	155
	150	RF	115	100	5				88.9	15.8	4	1/2	85
	300	RF	135	100	5				98.4	19.1	4	5/8	100
11/4	600	RF/RJ-18	135	100	9				98.4	19.1	4	5/8	105
(32mm)	900	RF/RJ-18	160	150	11				111.1	25.4	4	7/8	140
	1500	RF/RJ-18	160	150	20				111.1	25.4	4	7/8	140
	2500	RF/RJ-21	185	180	35				130.2	28.6	4	1	165
	150	RF	125	120	7				98.4	15.8	4	1/2	90
	300	RF	155	120	7				114.3	22.2	4	3/4	115
1½	600	RF/RJ-20	155	120	11				114.3	22.2	4	3/4	120
(40mm)	900	RF/RJ-20	180	170	13				123.8	28.6	4	1	155
	1500	RF/RJ-20	180	170	23				123.8	28.6	4	1	155
	2500	RF/RJ-23	205	210	40				146.0	31.8	4	1 1/8	190
	150	RF	150	120	7	203		9	120.7	19.1	4	5/8	105
	300	RF	165	120	9	267		13	127.0	19.1	8	5/8	110
2	600	RF/RJ-23	165	120	10	292	295	15	127.0	19.1	8	5/8	135
(50mm)	900	RF/RJ-24	215	170	26	368	371	37	165.1	25.4	8	7/8	170
	1500	RF/RJ-24	215	170	26	368	371	37	165.1	25.4	8	7/8	170
	2500	RF/RJ-26	235	210	37	451	454	54	171.4	28.6	8	1	205
	150	RF	180	120	10	216		15	139.7	19.1	4	5/8	105
01/	300	RF	190	150	10	292		19	149.2	22.2	8	3/4	120
2 ½	600	RF/RJ-26	190	150	17 05	330	333	23	149.2	22.2	8	3/4	130
(65mm)	900	RF/RJ-27	245	190	25 25	419	422	52	190.5	28.5	8		175
	1500	RF/RJ-27	245	190	35	419 509	422	67 01	190.5	28.5	8	1	175
	2500	RF/RJ-28	265	240	65 12	508 241	514	81	196.8 152.4	31.8	8	11/8	215
	150 300	RF RF	190 210	120 150	13 18	241 318		16 26	152.4 168.3	19.1 22.2	4 8	5/8 2/4	110
3	300 600	кг RF/RJ-31	210	150	20	318	 359	26 30	168.3	22.2	8	3/4 3/4	130 155
ہ (80mm)	900	RF/RJ-31	210	190	20 32	350 381	339 384	30 43	100.5	22.2 25.4	0 8	3/4 7/8	155
(oonnin)	900 1500	RF/RJ-31 RF/RJ-35	240 265	220	32 45	301 470	304 473	43 65	203.2	25.4 31.8	0 8	7/0 11/8	200
	2500	RF/RJ-35	305	220	45 83	470 578	473 584	05 119	203.2	31.0 34.9	0 8	1 1/0 1 1/4	200
	150	RF/RJ-32	230	140	20	292	J04 	28	190.5	19.1	0 8	5/8	110
	300	RF	255	140	31	356		41	200.0	22.2	8	3/4	135
4	600	RF/RJ-37	255	170	40	432	435	63	215.9	22.2	8	5/4 7/8	175
4 (100mm)	900	RF/RJ-37	275	210	40 53	452 457	435	73	215.9	23.4 31.8	0 8	1 1/8	175
(Toomin)	1500	RF/RJ-39	310	240	69	437 546	549	107	235.0	34.9	8	1 1/4	220
													290
	2500	RF/RJ-38	355	310	131	673	683	178	273.0	41.3	8	1 1/2	

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

				Type Standard E	e ZB ace-to-Face	ADI	Type ZD 6D Face-to-	Earo		EI A	NGE DE	FA II	
Size	Pressure	End	A	B	t Valve	B	B	t Valve	HOLE	HOLE		UD SELECT	
inches	Rating ASME	Facing	mm	mm	Weight kg	RF mm	RJ mm	Weight kg	P.C.D. mm	DIA. mm	No.	DIA. Inches	*Length mm
	150	RF	255	210	31				215.9	22.2	8	3/4	120
	300	RF	280	210	31				235.0	22.2	8	3/4	140
5	600	RF/RJ-41	330	210	55				266.7	28.6	8	1	190
(125mm)	900	RF/RJ-41	350	230	85				279.4	34.9	8	1 1/4	220
	1500	RF/RJ-44	375	310	140				292.1	41.3	8	1 1/2	285
	2500	RF/RJ-42	420	370	225				323.8	47.6	8	1 3/4	335
	150	RF	280	210	38	356		44	241.3	22.2	8	3/4	120
	300	RF	320	210	55	445		80	269.9	22.2	12	3/4	145
6	600	RF/RJ-45	355	210	82	559	562	137	292.1	28.6	12	1	200
(150mm)	900	RF/RJ-45	380	230	107	610	613	171	317.5	31.8	12	1 1/8	220
	1500	RF/RJ-46	395	310	160	705	711	231	317.5	38.1	12	1 3/8	295
	2500	RF/RJ-47	485	430	324	914	927	487	368.3	54.0	8	2	380
	150	RF	345	280	71	495		90	298.5	22.2	8	3/4	125
	300	RF	380	280	91	533		120	330.2	25.4	12	7/8	160
8	600	RF/RJ-49	420	280	135	660	664	213	349.2	31.8	12	1 1/8	220
(200mm)	900	RF/RJ-49	470	280	189	737	740	307	393.7	38.1	12	1 3/8	250
	1500	RF/RJ-50	485	350	269	832	841	390	393.7	44.5	12	1 5/8	325
	2500	RF/RJ-51	550	460	480	1022	1038	743	438.2	54.0	12	2	425
	150	RF	405	350	120	622		151	362.0	25.4	12	7/8	140
	300	RF	445	350	152	622		184	387.4	28.6	16	1	180
10	600	RF/RJ-53	510	350	252	787	791	380	431.8	34.9	16	1 1/4	245
(250mm)	900	RF/RJ-53	545	350	303	838	841	461	469.9	38.1	16	1 3/8	265
	1500	RF/RJ-54	585	400	461	991	1000	710	482.6	50.8	12	1 7/8	370
	2500	RF/RJ-55	675	580	952	1270	1292	1442	539.8	66.7	12	2 1/2	535

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type NB & ND Installation Dimensions

Flanges according to ASME B16.5 /

ASME B16.47 SERIES A (MSS SP44)

Type NB

Type ND

ND

					e NB o-Face	API	Type ND 6D Face-to	-Face		FLA	NGE DE	TAIL	
Size	Pressure	End	A	В	+ Valve	В	B	† Valve	HOLE	HOLE		UD SELECT	ION
0120	Rating	Facing		-	Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME	Ŭ	mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	485	350	175	699		341	431.8	25.4	12	7/8	150
	300	RF	520	350	235	711		400	450.8	31.8	16	1 1/8	205
12	600	RF/RJ-57	560	375	310	838	841	623	489.0	34.9	20	1 1/4	255
(300mm)	900	RF/RJ-57	610	340	390	965	968	966	533.4	38.1	20	1 3/8	285
	1500	RF/RJ-58	675	440	650	1130	1146	1638	571.5	54.0	16	2	415
	2500	RF/RJ-60	760	580	1286	1422	1445	2975	619.1	73.0	12	2 3/4	585
	150	RF	535	405	245	787		480	476.3	28.6	12	1	165
14	300	RF	585	405	330	838		601	514.4	31.8	20	1 1/8	210
(350mm)	600	RF/RJ-61	605	440	410	889	892	819	527.0	38.1	20	1 3/8	265
· ·	900	RF/RJ-62	640	400	510	1029	1038	1211	558.8	41.3	20	1 1/2	310
	1500	RF/RJ-63	750	490	1040	1257	1276	2114	635.0	60.3	16	2 1/4	455
	150	RF	595	455	345	864		714	539.8	28.6	16	1	170
16	300	RF	650	455	435	864		805	571.5	34.9	20	1 1/4	220
(400mm)	600	RF/RJ-65	685	500	610	991	994	1120	603.2	41.3	20	1 1/2	285
	900	RF/RJ-66	705	470	760	1130	1140	1407	616.0	44.5	20	1 5/8	325
	1500	RF/RJ-67	825	530	1280	1384	1407	1417	704.8	66.7	16	2 1/2	500
	150	RF	635	520	425	978		868	577.9	31.8	16	1 1/8	180
18	300	RF	710	520	580	978		1036	628.6	34.9	24	1 1/4	230
(450mm)	600	RF/RJ-69	745	565	790	1092	1095	1442	654.0	44.5	20	1 5/8	305
	900	RF/RJ-70	785	530	960	1219	1232	1960	685.8	50.8	20	1 7/8	365
	1500	RF/RJ-71	915	580	1600	1537	1559	3955	774.7	73.0	16	2 3/4	555
	150	RF	700	570	560	978		970	635.0	31.8	20	1 1/8	190
20	300	RF	775	570	760	1016		1217	685.8	34.9	24	1 1/4	240
(500mm)	600	RF/RJ-73	815	625	1170	1194	1200	1840	723.9	44.5	24	1 5/8	325
	900	RF/RJ-74	855	595	1260	1321	1334	2422	749.3	54.0	20	2	385
	1500	RF/RJ-75	985	655	2100	1664	1686	5124	831.8	79.4	16	3	590
	150	RF	815	685	890	1295		1691	749.3	34.9	20	1 1/4	205
24	300	RF	915	685	1240	1346		2177	812.8	41.3	24	1 1/2	265
(600mm)	600	RF/RJ-77	940	745	1630	1397	1407	2513	838.2	50.8	24	1 7/8	365
	900	RF/RJ-78	1040	665	1980	1549	1568	3661	901.7	66.7	20	2 1/2	485
	1500	RF/RJ-79	1170	750	3300	1943	1972	8183	990.6	92.1	16	3 1/2	675
	150	RF	925	800	1330	1448		1996	863.6	34.9	28	1 1/4	255
28	300	RF	1035	800	1800	1499		2860	939.8	44.5	28	1 5/8	305
(700mm)	600	RF/RJ-93	1075	870	2450	1600	1613	4212	965.2	54.0	28	2	405
	900	RF/RJ-100	1170	860	2890				1022.4	79.4	20	3	525
	150	RF	985	855	1590	1524		2353	914.4	34.9	28	1 1/4	260
30	300	RF	1090	855	2150	1594		3523	997.0	47.6	28	1 3/4	325
(750mm)	600	RF/RJ-95	1130	930	2570	1651	1664	4784	1022.4	54.0	28	2	410
	900	RF/RJ-102	1230	925	3540				1085.8	79.4	20	3	540
	150	RF	1060	910	1990				977.9	41.3	28	1 1/2	290
32	300	RF	1150	910	2200				1054.1	50.8	28	1 7/8	345
(800mm)	600	RF/RJ-96	1195	990	3200				1079.5	60.3	28	2 1/4	430
	900	RF/RJ-103	1315	925	4900				1155.7	85.7	20	3 1/4	570

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

www.noreva.de

					e NB o-Face	API	Type ND 6D Face-to-	-Face		FLA	NGE DE	TAIL	
Size	Pressure	End	A	В	† Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	1170	1030	2300	1956		3556	1085.8	41.3	32	1 1/2	305
36	300	RF	1270	1030	3100	2083		5727	1168.4	54.0	32	2	360
(900mm)	600	RF/RJ-98	1315	1120	4100	2083		7261	1193.8	66.7	28	2 1/2	455
	900	RF/RJ-105	1460	1050	5900				1289.0	92.1	20	3 1/2	615
	150	RF	1290	1135	3400				1200.2	41.3	36	1 1/2	305
40	300	RF	1240	1135	3900				1155.7	44.5	32	1 5/8	360
(1000mm)	600	RF	1320	1240	5400				1212.9	60.3	32	2 1/4	490
	900	RF	1510	1185	0A				1339.8	92.1	24	3 1/2	630
	150	RF	1345	1195	3600				1257.3	41.3	36	1 1/2	320
42	300	RF	1290	1195	4100				1206.5	44.5	32	1 5/8	370
(1050mm)	600	RF	1405	1300	5800				1282.7	66.7	28	2 1/2	520
	900	RF	1560	1250	0A				1390.6	92.1	24	3 1/2	650
	150	RF	1510	1365	5200				1422.4	41.3	44	1 1/2	340
48	300	RF	1465	1365	6000				1371.6	50.8	32	1 7/8	410
(1200mm)	600	RF	1595	1485	8800				1460.5	73.0	32	2 3/4	575
	900	RF	1785	1450	0A				1587.5	104.8	24	4	670

Flanges according to ASME B16.47 SERIES B (API 605)

				Type Face-t	e NB o-Face	API	Type ND 6D Face-to-	-Face		FLA	NGE DE	ſAIL	
Size	Pressure	End	Α	В	† Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	835	800	1330	1448		1775	795.3	22.2	40	3/4	175
28	300	RF	920	800	1800	1499		2535	857.2	34.9	36	1 1/4	290
(700mm)	600	RF/RJ-94	950	870	2450	1600	1613	3705	863.6	47.6	28	1 3/4	395
	900	RF/RJ-101	1105	860	2890				971.6	73.0	20	2 3/4	515
	150	RF	885	855	1590	1524		2080	846.1	22.2	44	3/4	175
30	300	RF	990	855	2150	1594		3250	920.8	38.1	36	1 3/8	305
(750mm)	600	RF/RJ-95	1020	930	2570	1651	1664	4472	927.1	50.8	28	1 7/8	420
	900	RF/RJ-102	1180	925	3540				1035.0	79.4	20	3	545
	150	RF	940	910	1990				900.1	22.2	48	3/4	175
32	300	RF	1055	910	2200				977.9	41.3	32	1 1/2	330
(800mm)	600	RF/RJ-96	1085	990	3200				984.2	54.0	28	2	440
	900	RF/RJ-103	1240	925	4900				1092.2	79.4	20	3	555
	150	RF	1055	1030	2300	1956		3062	1009.6	25.4	44	7/8	195
36	300	RF	1170	1030	3100	2083		5285	1089.0	44.5	32	1 5/8	340
(900mm)	600	RF/RJ-98	1215	1120	4100	2083		6832	1104.9	60.3	28	2 1/4	480
	900	RF/RJ-105	1345	1050	5900				1200.2	79.4	24	3	585
40	150	RF	1175	1135	3400				1120.8	28.6	44	1	210
(1000mm)	300	RF	1275	1135	3900				1190.6	44.5	40	1 5/8	365
42	150	RF	1225	1195	3600				1171.6	28.6	48	1	215
(1050mm)	300	RF	1335	1195	4100				1244.6	47.6	36	1 3/4	375
48	150	RF	1390	1365	5200				1335.1	31.8	44	1 1/8	235
(1200mm)	300	RF	1510	1365	6000				1416.0	50.8	40	1 7/8	400

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type NK Installation Dimensions

T

FLANGE DETAIL

Flanges according to ASME B16.5 / ASME B16.47 SERIES A (MSS SP44)

Size	Pressure	End	Α	В	† Valve	HOLE	HOLE	ST	UD SELECT	ION
	Rating	Facing			Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	485	181	105	431.8	25.4	12	7/8	150
	300	RF	520	181	155	450.8	31.8	16	1 1/8	205
12	600	RF/RJ-57	560	229	240	489.0	34.9	20	1 1/4	255
(300mm)	900	RF/RJ-57	610	310	380	533.4	38.1	20	1 3/8	285
	1500	RF/RJ-58	675	450	OA	571.5	54.0	16	2	415
	2500	RF/RJ-60	760	0A	OA	619.1	73.0	12	2 3/4	585
	150	RF	535	222	160	476.3	28.6	12	1	165
14	300	RF	585	222	230	514.4	31.8	20	1 1/8	210
(350mm)	600	RF/RJ-61	605	273	320	527.0	38.1	20	1 3/8	265
	900	RF/RJ-62	640	356	440	558.8	41.3	20	1 1/2	310
	1500	RF/RJ-63	750	500	0A	635.0	60.3	16	2 1/4	455
	150	RF	595	245	230	539.8	28.6	16	1	170
16	300	RF	650	245	340	571.5	34.9	20	1 1/4	220
(400mm)	600	RF/RJ-65	685	305	440	603.2	41.3	20	1 1/2	285
	900	RF/RJ-66	705	384	580	616.0	44.5	20	1 5/8	325
	1500	RF/RJ-67	825	550	OA	704.8	66.7	16	2 1/2	500
	150	RF	635	264	260	577.9	31.8	16	1 1/8	180
18	300	RF	710	264	350	628.6	34.9	24	11/4	230
(450mm)	600	RF/RJ-69	745	362	570	654.0	44.5	20	1 5/8	305
,	900	RF/RJ-70	785	420	800	685.8	50.8	20	17/8	365
	1500	RF/RJ-71	915	610	OA	774.7	73.0	16	2 3/4	555
	150	RF	700	305	350	635.0	31.8	20	1 1/8	190
20	300	RF	775	305	510	685.8	34.9	24	11/4	240
(500mm)	600	RF/RJ-73	815	368	740	723.9	44.5	24	1 5/8	325
(,	900	RF/RJ-74	855	430	900	749.3	54.0	20	2	385
	1500	RF/RJ-75	985	OA	0A	831.8	79.4	16	3	590
	150	RF	815	370	560	749.3	34.9	20	1 1/4	205
24	300	RF	915	370	780	812.8	41.3	24	11/2	265
(600mm)	600	RF/RJ-77	940	438	1120	838.2	50.8	24	17/8	365
(,	900	RF/RJ-78	1040	495	1650	901.7	66.7	20	2 1/2	485
	1500	RF/RJ-79	1170	OA	OA	990.6	92.1	16	3 1/2	675
	150	RF	925	430	820	863.6	34.9	28	11/4	255
28	300	RF	1035	430	1250	939.8	44.5	28	1 5/8	305
(700mm)	600	RF/RJ-93	1075	480	1600	965.2	54.0	28	2	405
(,,	900	RF/RJ-100	1170	540	2250	1022.4	79.4	20	3	525
	150	RF	985	460	950	914.4	34.9	28	11/4	260
30	300	RF	1090	460	1330	997.0	47.6	28	1 3/4	325
(750mm)	600	RF/RJ-95	1130	505	1760	1022.4	54.0	28	2	410
(, J onnin)	900	RF/RJ-102	1230	560	2600	1022.4	79.4	20	3	540
	150	RF	1060	500	1090	977.9	41.3	28	1 1/2	290
32	300	RF	1150	500	1500	1054.1	50.8	20	1 7/8	345
	000	N	1150	500	1500				17/0	
32 (800mm)	600	RF/RJ-96	1195	584	2100	1079.5	60.3	28	2 1/4	430

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

							FLA	NGE DET	TAIL	
Size	Pressure	End	Α	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	1170	560	1600	1085.8	41.3	32	1 1/2	305
36	300	RF	1270	560	2100	1168.4	54.0	32	2	360
(900mm)	600	RF/RJ-98	1315	635	2800	1193.8	66.7	28	2 1/2	455
() coming	900	RF/RJ-105	1460	690	4700	1289.0	92.1	20	3 1/2	615
	150	RF	1290	650	2100	1200.2	41.3	36	1 1/2	320
40	300	RF	1240	650	2120	1155.7	44.5	32	1 5/8	370
(1000mm)	600	RF	1320	820	3200	1212.9	60.3	32	2 1/4	520
	900	RF	1510	970	6400	1339.8	92.1	24	3 1/2	650
	150	RF	1345	670	2500	1257.3	41.3	36	1 1/2	320
42	300	RF	1290	720	2600	1206.5	44.5	32	1 5/8	370
(1050mm)	600	RF	1405	870	4100	1282.7	66.7	28	2 1/2	520
	900	RF	1560	1100	6700	1390.6	92.1	24	3 1/2	650
	150	RF	1510	740	3300	1422.4	41.3	44	1 1/2	340
48	300	RF	1465	840	3600	1371.6	50.8	32	1 7/8	410
(1200mm)	600	RF	1595	970	5850	1460.5	73.0	32	2 3/4	575
	900	RF	1785	1250	8300	1587.5	104.8	24	4	670

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Flanges according to ASME B16.47 SERIES B (API 605)

Flange	s acco	rding to	ASME B16.	47 SERIES E	8 (API 605)		FLA	NGE DET	TAIL	
Size	Pressure	End	A	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	835	430	980	795.3	22.2	40	3/4	175
28	300	RF	920	430	1250	857.2	34.9	36	11/4	290
(700mm)	600	RF/RJ-94	950	480	1700	863.6	47.6	28	1 3/4	395
	900	RF/RJ-101	1105	540	2375	971.6	73.0	20	2 3/4	515
	150	RF	885	460	1150	846.1	22.2	44	3/4	175
30	300	RF	990	460	1500	920.8	38.1	36	1 3/8	305
(750mm)	600	RF/RJ-95	1020	505	1900	927.1	50.8	28	1 7/8	420
	900	RF/RJ-102	1180	560	2800	1035.0	79.4	20	3	545
	150	RF	940	500	1300	900.1	22.2	48	3/4	175
32	300	RF	1055	500	1750	977.9	41.3	32	1 1/2	330
(800mm)	600	RF/RJ-96	1085	584	2550	984.2	54.0	28	2	440
	900	RF/RJ-103	1240	OA	OA	1092.2	79.4	20	3	555
	150	RF	1055	560	1800	1009.6	25.4	44	7/8	195
36	300	RF	1170	560	2350	1089.0	44.5	32	1 5/8	340
(900mm)	600	RF/RJ-98	1215	635	3000	1104.9	60.3	28	2 1/4	480
	900	RF/RJ-105	1345	690	4700	1200.2	79.4	24	3	585
40	150	RF	1175	650	2100	1120.8	28.6	44	1	210
(1000mm)	300	RF	1275	650	2120	1190.6	44.5	40	1 5/8	365
42	150	RF	1225	670	2850	1171.6	28.6	48	1	215
(1050mm)	300	RF	1335	720	2950	1244.6	47.6	36	1 3/4	375
48	150	RF	1390	740	3300	1335.1	31.8	44	1 1/8	235
(1200mm)	300	RF	1510	840	3600	1416.0	50.8	40	1 7/8	400

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type NZ

18

Type NC

NOZZLE CHECK VALVES

Valve Types - Special Applications

For Gas Applications

For gas applications with very low flow speeds we invented the NZ and NC designs. With this design the ring disc is centrally guided with a single spring utilising the same valve body as its sister valve type NB/NK. It provides the same internal flow profile and, consequentally, the same pressure loss.

Type NZ

- Fully balanced ring disk
- Worldwide patented design
- Easy adjustable on site
- Up to PN 400 (ANSI 2500)
- Single spring
- Specifically for gas applications
- Low pressure loss
- Maintenance free
- 12" 88" (DN 300 DN 2200)

NZ is designed for the gas applications with very low flowrates; it combines the advantages of minimized friction due to zero bending moments on the disc, stable operation at partial open flow and best dynamic behavior due to shortest disc stroke of any axial check valve. Type NA is in accordance with API face-to-face dimensions.

Type NC

- Short face-to-face length
- Specifically for gas applications Worldwide patented design
- Maintenance free
- 12" 88" (DN 300 DN 2200) Up to PN 400 (ANSI 2500)
- Fully balanced ring disk
- Easy adjustable on site
- Single spring • Low pressure loss

NC is a lower cost solution which combines the advantages of the NZ with a shorter face-toface length and reduced weight, where marginally higher pressure drops are acceptable.

For Potable Water Applications

Specifically for the potable water market we are still manufacturing two of the best established valve designs, the types ZO and NG. These valves were designed in 1935 and 1955 respectively

Type ZO

Non-slam closure

Choice of face-to-face length

DN 25 (1") to DN 250 (10")

- Maintenance free
- Low pressure loss • PN 10 and PN 16
- Metal sealing

 - Specifically for potable water service

ZO is available from DN25 to DN250 and in pressure classes PN 10 and PN 16 (other pressure classes are available upon special request), the face-to-face dimensions of the ZL type are in accordance with DIN EN 558-1.

Type NG

- Non-slam closure
- 12" 24" (DN 300 DN 600)
- Lowest pressure loss
- Friction-free valve disc guiding
- Specifically for potable water service
- PN 10 PN 16 Maintenance free

Pressure recovery is further enhanced within the Type G valve. Whilst using the same Ring Disc format, the Type G valve has a wider, split body design facilitating even greater flow efficiency and throughput performance.

Type NG

TYPE NZ, ZO & NG

Body lower

Seat Ring

Radial Guide

Flow Diffuser Inlet

Flow Diffuser

Type NG

Type NZ & NA Installation Dimensions

PCD CA NZ

Flanges according to ASME B16.5 / ASME B16.47 SERIES A (MSS SP44)

					e NZ o-Face	API	Type NA 6D Face-to-	Face		FLA	NGE DE	TAIL	
Size	Pressure	End	Α	В	† Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECT	ION
	Rating	Facing			Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	485	350	175	699		341	431.8	25.4	12	7/8	150
	300	RF	520	350	235	711		400	450.8	31.8	16	1 1/8	205
12	600	RF/RJ-57	560	375	310	838	841	623	489.0	34.9	20	1 1/4	255
(300mm)	900	RF/RJ-57	610	340	390	965	968	966	533.4	38.1	20	1 3/8	285
	1500	RF/RJ-58	675	440	650	1130	1146	1638	571.5	54.0	16	2	415
	2500	RF/RJ-60	760	580	1286	1422	1445	2975	619.1	73.0	12	2 3/4	585
	150	RF	535	405	245	787		480	476.3	28.6	12	1	165
14	300	RF	585	405	330	838		601	514.4	31.8	20	1 1/8	210
(350mm)	600	RF/RJ-61	605	440	410	889	892	819	527.0	38.1	20	1 3/8	265
	900	RF/RJ-62	640	400	510	1029	1038	1211	558.8	41.3	20	1 1/2	310
	1500	RF/RJ-63	750	490	1040	1257	1276	2114	635.0	60.3	16	2 1/4	455
	150	RF	595	455	345	864		714	539.8	28.6	16	1	170
16	300	RF	650	455	435	864		805	571.5	34.9	20	1 1/4	220
(400mm)	600	RF/RJ-65	685	500	610	991	994	1120	603.2	41.3	20	1 1/2	285
	900	RF/RJ-66	705	470	760	1130	1140	1407	616.0	44.5	20	1 5/8	325
	1500	RF/RJ-67	825	530	1280	1384	1407	1417	704.8	66.7	16	2 1/2	500
	150	RF	635	520	425	978		868	577.9	31.8	16	1 1/8	180
18	300	RF	710	520	580	978		1036	628.6	34.9	24	1 1/4	230
(450mm)	600	RF/RJ-69	745	565	790	1092	1095	1442	654.0	44.5	20	1 5/8	305
	900	RF/RJ-70	785	530	960	1219	1232	1960	685.8	50.8	20	1 7/8	365
	1500	RF/RJ-71	915	580	1600	1537	1559	3955	774.7	73.0	16	2 3/4	555
	150	RF	700	570	560	978		970	635.0	31.8	20	1 1/8	190
20	300	RF	775	570	760	1016		1217	685.8	34.9	24	1 1/4	240
(500mm)	600	RF/RJ-73	815	625	1170	1194	1200	1840	723.9	44.5	24	1 5/8	325
	900	RF/RJ-74	855	595	1260	1321	1334	2422	749.3	54.0	20	2	385
	1500	RF/RJ-75	985	655	2100	1664	1686	5124	831.8	79.4	16	3	590
	150	RF	815	685	890	1295		1691	749.3	34.9	20	1 1/4	205
24	300	RF	915	685	1240	1346		2177	812.8	41.3	24	1 1/2	265
(600mm)	600	RF/RJ-77	940	745	1630	1397	1407	2513	838.2	50.8	24	1 7/8	365
	900	RF/RJ-78	1040	665	1980	1549	1568	3661	901.7	66.7	20	2 1/2	485
	1500	RF/RJ-79	1170	750	3300	1943	1972	8183	990.6	92.1	16	3 1/2	675
	150	RF	925	800	1330	1448		1996	863.6	34.9	28	1 1/4	255
28	300	RF	1035	800	1800	1499		2860	939.8	44.5	28	1 5/8	305
(700mm)	600	RF/RJ-93	1075	870	2450	1600	1613	4212	965.2	54.0	28	2	405
	900	RF/RJ-100	1170	860	2890				1022.4	79.4	20	3	525
	150	RF	985	855	1590	1524		2353	914.4	34.9	28	11/4	260
30	300	RF	1090	855	2150	1594		3523	997.0	47.6	28	1 3/4	325
(750mm)	600	RF/RJ-95	1130	930	2570	1651	1664	4784	1022.4	54.0	28	2	410
	900	RF/RJ-102	1230	925	3540				1085.8	79.4	20	3	540
	150	RF	1060	910	1990				977.9	41.3	28	1 1/2	290
32	300	RF	1150	910	2200				1054.1	50.8	28	1 7/8	345
(800mm)	600	RF/RJ-96	1195	990	3200				1079.5	60.3	28	2 1/4	430
	900	RF/RJ-103	1315	925	4900				1155.7	85.7	20	3 1/4	570

 $^{*}\,$ Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

+ Weights are for valve only and exclude mating flanges and bolting. Weight will vary according to corrosion allowance specification.

www.noreva.de

					e NZ o-Face	API	Type NA 6D Face-to-	Face		FLA	NGE DE	TAIL	
Size	Pressure	End	A	В	† Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	1170	1030	2300	1956		3556	1085.8	41.3	32	1 1/2	305
36	300	RF	1270	1030	3100	2083		5727	1168.4	54.0	32	2	360
(900mm)	600	RF/RJ-98	1315	1120	4100	2083		7261	1193.8	66.7	28	2 1/2	455
	900	RF/RJ-105	1460	1050	5900				1289.0	92.1	20	3 1/2	615
	150	RF	1290	1135	3400				1200.2	41.3	36	1 1/2	305
40	300	RF	1240	1135	3900				1155.7	44.5	32	1 5/8	360
(1000mm)	600	RF	1320	1240	5400				1212.9	60.3	32	2 1/4	490
	900	RF	1510	1185	0A				1339.8	92.1	24	3 1/2	630
	150	RF	1345	1195	3600				1257.3	41.3	36	1 1/2	320
42	300	RF	1290	1195	4100				1206.5	44.5	32	1 5/8	370
(1050mm)	600	RF	1405	1300	5800				1282.7	66.7	28	2 1/2	520
	900	RF	1560	1250	0A				1390.6	92.1	24	3 1/2	650
	150	RF	1510	1365	5200				1422.4	41.3	44	1 1/2	340
48	300	RF	1465	1365	6000				1371.6	50.8	32	1 7/8	410
(1200mm)	600	RF	1595	1485	8800				1460.5	73.0	32	2 3/4	575
	900	RF	1785	1450	0A				1587.5	104.8	24	4	670

Flanges according to ASME B16.47 SERIES B (API 605)

				Type Face-t	e NZ o-Face	API	Type NA 6D Face-to-	Face		FLA	NGE DE	FAIL	
Size	Pressure	End	Α	В	† Valve	В	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	RF	RJ	Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	835	800	1330	1448		1775	795.3	22.2	40	3/4	175
28	300	RF	920	800	1800	1499		2535	857.2	34.9	36	1 1/4	290
(700mm)	600	RF/RJ-94	950	870	2450	1600	1613	3705	863.6	47.6	28	1 3/4	395
	900	RF/RJ-101	1105	860	2890				971.6	73.0	20	2 3/4	515
	150	RF	885	855	1590	1524		2080	846.1	22.2	44	3/4	175
30	300	RF	990	855	2150	1594		3250	920.8	38.1	36	1 3/8	305
(750mm)	600	RF/RJ-95	1020	930	2570	1651	1664	4472	927.1	50.8	28	1 7/8	420
	900	RF/RJ-102	1180	925	3540				1035.0	79.4	20	3	545
	150	RF	940	910	1990				900.1	22.2	48	3/4	175
32	300	RF	1055	910	2200				977.9	41.3	32	1 1/2	330
(800mm)	600	RF/RJ-96	1085	990	3200				984.2	54.0	28	2	440
	900	RF/RJ-103	1240	925	4900				1092.2	79.4	20	3	555
	150	RF	1055	1030	2300	1956		3062	1009.6	25.4	44	7/8	195
36	300	RF	1170	1030	3100	2083		5285	1089.0	44.5	32	1 5/8	340
(900mm)	600	RF/RJ-98	1215	1120	4100	2083		6832	1104.9	60.3	28	2 1/4	480
	900	RF/RJ-105	1345	1050	5900				1200.2	79.4	24	3	585
40	150	RF	1175	1135	3400				1120.8	28.6	44	1	210
(1000mm)	300	RF	1275	1135	3900				1190.6	44.5	40	1 5/8	365
42	150	RF	1225	1195	3600				1171.6	28.6	48	1	215
(1050mm)	300	RF	1335	1195	4100				1244.6	47.6	36	1 3/4	375
48	150	RF	1390	1365	5200				1335.1	31.8	44	1 1/8	235
(1200mm)	300	RF	1510	1365	6000				1416.0	50.8	40	1 7/8	400

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type NC Installation Dimensions

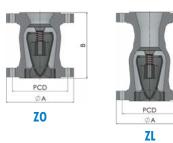
Flanges according to ASME B16.5 / ASME B16.47 SERIES A (MSS SP44)

Size	Pressure	End	Α	В	+ Valve	HOLE	HOLE	NGE DE	UD SELECT	
SIZE	Rating	Facing	A	D	Weight	P.C.D.	DIA.	- 31		
inches	ASME	rucing	mm	mm	kg	mm	mm	No.	DIA. Inches	*Length mm
	150	RF	485	181	105	431.8	25.4	12	7/8	150
	300	RF	520	181	155	450.8	31.8	16	1 1/8	205
12	600	RF/RJ-57	560	229	240	489.0	34.9	20	1 1/4	255
(300mm)	900	RF/RJ-57	610	310	380	533.4	38.1	20	1 3/8	285
	1500	RF/RJ-58	675	450	0A	571.5	54.0	16	2	415
	2500	RF/RJ-60	760	0A	0A	619.1	73.0	12	2 3/4	585
	150	RF	535	222	160	476.3	28.6	12	1	165
14	300	RF	585	222	230	514.4	31.8	20	1 1/8	210
(350mm)	600	RF/RJ-61	605	273	320	527.0	38.1	20	1 3/8	265
· · ·	900	RF/RJ-62	640	356	440	558.8	41.3	20	1 1/2	310
	1500	RF/RJ-63	750	500	OA	635.0	60.3	16	2 1/4	455
	150	RF	595	245	230	539.8	28.6	16	1	170
16	300	RF	650	245	340	571.5	34.9	20	1 1/4	220
(400mm)	600	RF/RJ-65	685	305	440	603.2	41.3	20	1 1/2	285
· · ·	900	RF/RJ-66	705	384	580	616.0	44.5	20	1 5/8	325
	1500	RF/RJ-67	825	550	OA	704.8	66.7	16	2 1/2	500
	150	RF	635	264	260	577.9	31.8	16	1 1/8	180
18	300	RF	710	264	350	628.6	34.9	24	1 1/4	230
(450mm)	600	RF/RJ-69	745	362	570	654.0	44.5	20	1 5/8	305
. ,	900	RF/RJ-70	785	420	800	685.8	50.8	20	17/8	365
	1500	RF/RJ-71	915	610	OA	774.7	73.0	16	2 3/4	555
	150	RF	700	305	350	635.0	31.8	20	1 1/8	190
20	300	RF	775	305	510	685.8	34.9	24	1 1/4	240
(500mm)	600	RF/RJ-73	815	368	740	723.9	44.5	24	1 5/8	325
	900	RF/RJ-74	855	430	900	749.3	54.0	20	2	385
	1500	RF/RJ-75	985	0A	0A	831.8	79.4	16	3	590
	150	RF	815	370	560	749.3	34.9	20	1 1/4	205
24	300	RF	915	370	780	812.8	41.3	24	1 1/2	265
(600mm)	600	RF/RJ-77	940	438	1120	838.2	50.8	24	1 7/8	365
	900	RF/RJ-78	1040	495	1650	901.7	66.7	20	2 1/2	485
	1500	RF/RJ-79	1170	OA	OA	990.6	92.1	16	3 1/2	675
	150	RF	925	430	820	863.6	34.9	28	1 1/4	255
28	300	RF	1035	430	1250	939.8	44.5	28	1 5/8	305
(700mm)	600	RF/RJ-93	1075	480	1600	965.2	54.0	28	2	405
	900	RF/RJ-100	1170	540	2250	1022.4	79.4	20	3	525
	150	RF	985	460	950	914.4	34.9	28	1 1/4	260
30	300	RF	1090	460	1330	997.0	47.6	28	1 3/4	325
(750mm)	600	RF/RJ-95	1130	505	1760	1022.4	54.0	28	2	410
	900	RF/RJ-102	1230	560	2600	1085.8	79.4	20	3	540
	150	RF	1060	500	1090	977.9	41.3	28	1 1/2	290
32	300	RF	1150	500	1500	1054.1	50.8	28	1 7/8	345
(800mm)	600	RF/RJ-96	1195	584	2100	1079.5	60.3	28	2 1/4	430
	900	RF/RJ-103	1315	0A	0A	1155.7	85.7	20	3 1/4	570

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

						1	FLA	NGE DE	TAIL	
Size	Pressure	End	Α	В	+ Valve	HOLE	HOLE	ST	UD SELECT	ON
	Rating	Facing			Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	1170	560	1600	1085.8	41.3	32	1 1/2	305
36	300	RF	1270	560	2100	1168.4	54.0	32	2	360
(900mm)	600	RF/RJ-98	1315	635	2800	1193.8	66.7	28	2 1/2	455
	900	RF/RJ-105	1460	690	4700	1289.0	92.1	20	3 1/2	615
	150	RF	1290	650	2100	1200.2	41.3	36	1 1/2	320
40	300	RF	1240	650	2120	1155.7	44.5	32	1 5/8	370
(1000mm)	600	RF	1320	820	3200	1212.9	60.3	32	2 1/4	520
	900	RF	1510	970	6400	1339.8	92.1	24	3 1/2	650
	150	RF	1345	670	2500	1257.3	41.3	36	1 1/2	320
42	300	RF	1290	720	2600	1206.5	44.5	32	1 5/8	370
(1050mm)	600	RF	1405	870	4100	1282.7	66.7	28	2 1/2	520
	900	RF	1560	1100	6700	1390.6	92.1	24	3 1/2	650
	150	RF	1510	740	3300	1422.4	41.3	44	1 1/2	340
48	300	RF	1465	840	3600	1371.6	50.8	32	1 7/8	410
(1200mm)	600	RF	1595	970	5850	1460.5	73.0	32	2 3/4	575
	900	RF	1785	1250	8300	1587.5	104.8	24	4	670

Flanges according to ASME B16.47 SERIES B (API 605)


Flange	s <mark>acco</mark>	rding to	ASME B16.	47 SERIES E	3 (API 605)		FLA	NGE DET	TAIL	
Size	Pressure	End	Α	В	† Valve	HOLE	HOLE	ST	UD SELECTI	ON
	Rating	Facing			Weight	P.C.D.	DIA.		DIA.	*Length
inches	ASME		mm	mm	kg	mm	mm	No.	Inches	mm
	150	RF	835	430	980	795.3	22.2	40	3/4	175
28	300	RF	920	430	1250	857.2	34.9	36	1 1/4	290
(700mm)	600	RF/RJ-94	950	480	1700	863.6	47.6	28	1 3/4	395
	900	RF/RJ-101	1105	540	2375	971.6	73.0	20	2 3/4	515
	150	RF	885	460	1150	846.1	22.2	44	3/4	175
30	300	RF	990	460	1500	920.8	38.1	36	1 3/8	305
(750mm)	600	RF/RJ-95	1020	505	1800	927.1	50.8	28	1 7/8	420
	900	RF/RJ-102	1180	560	2800	1035.0	79.4	20	3	545
	150	RF	940	500	1300	900.1	22.2	48	3/4	175
32	300	RF	1055	500	1750	977.9	41.3	32	1 1/2	330
(800mm)	600	RF/RJ-96	1085	584	2550	984.2	54.0	28	2	440
	900	RF/RJ-103	1240	AO	OA	1092.2	79.4	20	3	555
	150	RF	1055	560	1800	1009.6	25.4	44	7/8	195
36	300	RF	1170	560	2350	1089.0	44.5	32	1 5/8	340
(900mm)	600	RF/RJ-98	1215	635	3000	1104.9	60.3	28	2 1/4	480
	900	RF/RJ-105	1345	690	OA	1200.2	79.4	24	3	585
40	150	RF	1175	650	2100	1120.8	28.6	44	1	210
(1000mm)	300	RF	1275	650	2120	1190.6	44.5	40	1 5/8	365
42	150	RF	1225	670	2850	1171.6	28.6	48	1	215
(1050mm)	300	RF	1335	720	2550	1244.6	47.6	36	1 3/4	375
48	150	RF	1390	740	3300	1335.1	31.8	44	1 1/8	235
(1200mm)	300	RF	1510	840	3600	1416.0	50.8	40	1 7/8	400

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type ZO & ZL Installation Dimensions

Flanges according to DIN EN 1092 -1/-2

				Type Standard Fe			e ZL Face-to-Face		FLANGE D	ETAIL	
Size	Pressure	End	Α	В	Valve	В	+ Valve	HOLE	HOLE	STUD S	ELECTION
	Rating	Facing			Weight	RF	Weight	P.C.D.	DIA.		DIA.
inches	ASME		mm	mm	kg	mm	kg	mm	mm	No.	Inches
	PN 10	Form A/B1	115	100	4	160	4.5	85	14	4	M12
1	PN 16	Form A/B1	115	100	4	160	4.5	85	14	4	M12
(25 mm)	PN 25	Form A/B1	115	100	4	160	4.5	85	14	4	M12
(23 mm)	PN 40	Form A/B1	115	100	4	160	4.5	85	14	4	M12
	PN 63	Form A/B1	140	100	4	230	9	100	18	4	M16
	PN 10	Form A/B1	140	100	5	180	6	100	18	4	M16
1 1/4	PN 16	Form A/B1	140	100	5	180	6	100	18	4	M16
(32 mm)	PN 25	Form A/B1	140	100	5	180	6	100	18	4	M16
(02 1111)	PN 40	Form A/B1	140	100	5	180	6	100	18	4	M16
	PN 63	Form A/B1	155	100	7	260	13	110	22	4	M20
	PN 10	Form A/B1	150	120	7	180	8	110	18	4	M16
1 1/2	PN 16	Form A/B1	150	120	7	180	8	110	18	4	M16
(40 mm)	PN 25	Form A/B1	150	120	7	200	8	110	18	4	M16
	PN 40	Form A/B1	150	120	7	200	8	110	18	4	M16
	PN 63	Form A/B1	170	120	8	260	15	125	22	4	M20
	PN 10	Form A/B1	165	120	8	200	12	125	18	4	M16
2	PN 16	Form A/B1	165	120	8	200	12	125	18	4	M16
(50 mm)	PN 25	Form A/B1	165	120	9	230	13	125	18	4	M16
(50 mm)	PN 40	Form A/B1	165	120	9	230	13	125	18	4	M16
	PN 63	Form A/B1	180	120	11	300	20	135	22	4	M20
	PN 10	Form A/B1	185	150	-11	240	16	145	18	8	M16
2 1/2	PN 16	Form A/B1	185	150	11	240	16	145	18	8	M16
(65 mm)	PN 25	Form A/B1	185	150	13	290	20	145	18	8	M16
(,	PN 40	Form A/B1	185	150	13	290	20	145	18	8	M16
	PN 63	Form A/B1	205	150	16	340	26	160	22	8	M20
	PN 10	Form A/B1	200	180	17	260	21	160	18	8	M16
3	PN 16	Form A/B1	200	180	17	260	21	160	18	8	M16
(80 mm)	PN 25	Form A/B1	200	180	19	310	26.5	160	18	8	M16
()	PN 40	Form A/B1	200	180	19	310	27	160	18	8	M16
	PN 63	Form A/B1	215	180	22	380	35	170	22	8	M20
	PN 10	Form A/B1	220	240	24	300	30	180	18	8	M16
4	PN 16	Form A/B1	220	240	24	300	30	180	18	8	M16
(100 mm)	PN 25	Form A/B1	235	240	27	350	37	190	22	8	M20
. ,	PN 40	Form A/B1	235	240	27	350	37	190	22	8	M20
	PN 63	Form A/B1	250	240	32	430	55	200	26	8	M24

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

				Type Standard F			e ZL Face-to-Face		FLANGE I	DETAIL	
Size	Pressure	End	A	В	Valve	В	† Valve	HOLE	HOLE	STUD S	ELECTION
inches	Rating ASME	Facing	mm	mm	Weight kg	RF mm	Weight kg	P.C.D. mm	DIA. mm	No.	DIA. Inches
	PN 10	Form A/B1	250	300	40	350	43	210	18	8	M16
5	PN 16	Form A/B1	250	300	40	350	43	210	18	8	M16
(125 mm)	PN 25	Form A/B1	270	300	40	400	60	220	26	8	M24
(125 1111)	PN 40	Form A/B1	270	300	40	400	60	220	26	8	M24
	PN 63	Form A/B1	295	300	48	500	85	240	30	8	M27
	PN 10	Form A/B1	285	350	47	400	64	240	22	8	M20
6	PN 16	Form A/B1	285	350	48	400	64	240	22	8	M20
o (150 mm)	PN 25	Form A/B1	300	350	58	480	100	250	26	8	M24
	PN 40	Form A/B1	300	350	55	480	100	250	26	8	M24
	PN 63	Form A/B1	345	350	75	550	135	280	33	8	M30
	PN 10	Form A/B1	340	450	90	500	115	295	22	8	M20
8	PN 16	Form A/B1	340	450	90	500	120	295	22	12	M20
(200 mm)	PN 25	Form A/B1	360	450	97	600	125	310	26	12	M24
(200 mm)	PN 40	Form A/B1	375	450	110	600	150	320	30	12	M27
	PN 63	Form A/B1	415	450	140	650	180	345	36	12	M33
	PN 10	Form A/B1	395	500	115	600	207	350	22	12	M20
10	PN 16	Form A/B1	405	500	120	600	214	355	26	12	M24
(250 mm)	PN 25	Form A/B1	425	500	125	730	270	370	30	12	M27
(230 1111)	PN 40	Form A/B1	450	500	145	730	364	385	33	12	M30
	PN 63	Form A/B1	470	500	220	775	410	400	36	12	M33

 $^{\ast}~$ Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

Type NG Installation Dimensions

Flanges according to DIN EN 1092-1/-2

NG

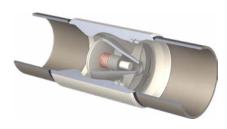
Size	Pressure	End	Α	В	† Valve	HOLE	HOLE	STUD S	ELECTION
inches	Rating DIN	Facing	mm	mm	Weight kg	P.C.D. mm	DIA. mm	No.	DIA. Inches
12	PN 10	Form B/B1	445	500	233	400	22/23	12	M20
(300 mm)	PN 16	Form B/B1	460	500	250	410	26/28	12	M24
14	PN 10	Form B/B1	505	600	325	460	22/23	16	M20
(350 mm)	PN 16	Form B/B1	520	600	400	470	26/28	16	M24
16	PN 10	Form B/B1	565	675	450	515	26/28	16	M24
(400 mm)	PN 16	Form B/B1	580	675	550	525	30/31	16	M27
18	PN 10	Form B/B1	615	750	580	565	26/28	20	M24
(450 mm)	PN 16	Form B/B1	640	750	690	585	30/31	20	M27
20	PN 10	Form B/B1	670	850	720	620	26/28	20	M24
(50 mm)	PN 16	Form B/B1	715	850	895	650	33/34	20	M30
24	PN 10	Form B/B1	780	1000	1050	725	30/31	20	M27
(600 mm)	PN 16	Form B/B1	840	1000	1400	770	36/37	20	M33

* Where Ring Joint Facing shown in End Facing, Stud lengths based on Ring Joint flange connection.

ENGINEERING DATA Installation Between End Connections

Flanged Type ZBF

Hub-End Type ZBH


Flanged Type NKF

Hub End Type NKH

Buttweld End Type ZBW

Buttweld End Type NKW

Flange Type

In acc. with: EN, ANSI, MSS, API, etc. Valve Types: ZB, ZD, ZO, ZL, NK, NB, ND, NG, NC, NA, NZ

Wafer Type

In acc. with: EN, ANSI, MSS, API, etc. Valve Types: ZS, NK, NC

In acc. with: EN, ANSI, API, etc. Valve Types: ZB, ZD, ZO, ZL, NK, NB, ND, NC, NA, NZ

Fully Lugged Wafer Type

In acc. with: EN, ANSI, MSS, API, etc. Valve Types: ZS, NK, NC

In acc. with: Grayloc, Techlok, etc. Valve Types: ZB, ZD, NK, NB, ND, NC, NA, NZ

In acc. with: EN, ANSI, MSS, API, etc. Valve Types: ZB, ZD

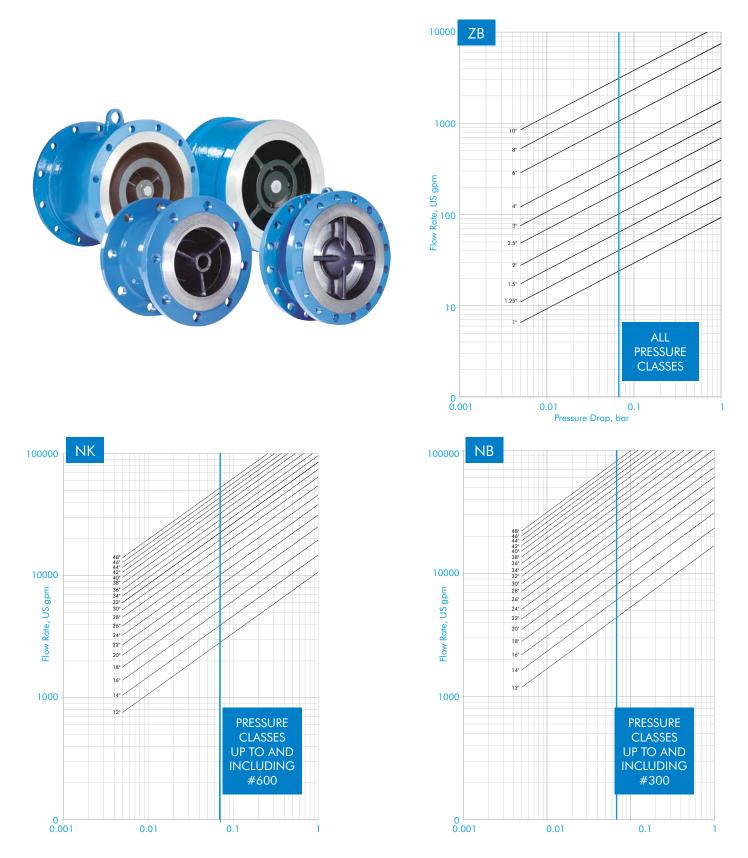
ENGINEERING DATA Flow Coefficient (C_v)

AXIAL CHECK VALVE FLOW CO-EFFICIENT (C_v)

Valve Size	Z0	ZB	Valve Size	NG	NC/NK	NZ/NB
1	19	24	12	4667	2808	4425
1.25	32	41	14	6561	3884	6127
1,5	52	65	16	8870	5158	8146
2	84	104	18	11650	6609	10436
2.5	146	180	20	14727	8262	13046
3	228	282	22	18114	10048	15887
4	367	453	24	22117	12051	19029
5	592	725	26		14369	22629
6	882	1071	28		16893	26601
8	1694	1967	30		19501	30748
10	2764	3163				

The above tabulated C_v values are for the most commonly used axial valves. For the full range of C_v values please see the graphs on the following pages or contact Noreva.

Valve Cracking Pressures


On the initial opening of a check valve, such as at system start-up, the upstream pressure applied by the fluid to the front of the disc is required to overcome the force of the spring and any upstream back pressure acting on the back of the disc. The pressure differential at which this happens is known as the "cracking pressure". When the pressure differential exceeds the cracking pressure, the valve disc is "cracked open" from the valve seat and the media can flow.

As soon as the disc is cracked open the media cannot sustain a pressure differential and at this point the discs are not kept open by pressure, but by the fluid velocity (see Critical velocity).

Specific values for cracking pressures at atmospheric conditions can be obtained from Noreva upon request.

ENGINEERING DATA Pressure Loss

Pressure drop versus flow, as depicted in the above graphs, have been established following tests carried out at Delft Hydraulics Laboratories.

The flow curves do not show the full Noreva range. Upon request Noreva can manufacture valves in sizes up to 88" diameter and in pressure classes up to API 20000.

ENGINEERING DATA Critical Velocity

All check valves should be used in the fully open position. This means that the force provided by the flowing fluid must be greater than the force from the spring(s). This velocity is known as the "Critical Velocity", i.e. that fluid velocity required to keep the disc of a valve fully open.

If the fully open position is not reached any pressure drop calculations would be invalid as the C_v of a valve is determined on the basis of the valve being fully open. With the valve disc only partially open, i.e. the flow velocity being less than the critical velocity of the valve, then a higher pressure drop will exist than would otherwise be calculated.

Noreva offers a range of spring options requiring different critical velocities to ensure a fully open valve can be selected to suit customer flow data that will be both chatterfree and provide excellent dynamics. All Critical Velocities in the tables are for water. When the fluid is gaseous an energy balance can be applied to convert the media velocity to a water equivalent velocity.

For valves that are installed in a vertical flow up or inclined up position, it must be borne in mind that the fluid velocity must be sufficient to overcome the weight vector of the disc in addition to the Critical Velocity of the spring.

For flow velocities different to those on the right, please consult Noreva. Other spring strengths are available.

Chatter / Flutter

Chatter or flutter can occur when the forward flow is insufficient to fully open the valve disc, i.e. flow through the valve is less than the critical velocity of the valve. Chatter/Flutter will ultimately lead to premature failure of a valve's internal components. A correctly sized check valve should be fully open when operating in forward flow.

To ensure a value is fully open, the flow through the value must exceed the 'critical velocity'. The spring must be chosen such that it is weaker than the flow through the value, otherwise the value will be only partially open.

Pressure Surge

A check valve closing against a rapidly moving reverse-flowing liquid induces a pressure rise in the downstream region of the line at the moment of closure.

This pressure rise can become large and result in a surge of high pressure moving back down the line as a shock wave.

The magnitude of this pressure was characterised by Joukowsky as:

$$\Delta P_{SURGE} = \frac{\rho \cdot c \cdot v_{r}}{1 \times 10^5}$$

Where ΔP is the maximum surge pressure (bar), ρ is the media density (kg/m³), c is the celerity (velocity of sound in the line, m/s), v_r is the maximum reverse velocity of the fluid (m/s).

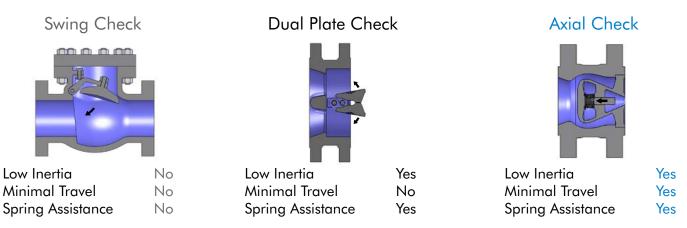
Axial Check Valve Springs

And Chock failed opt	nigo
Spring	Critical Velocity
#0	1.0 m/s
#1	1.5 m/s
#2	2.0 m/s
#3	2.5 m/s
#4	3.0 m/s

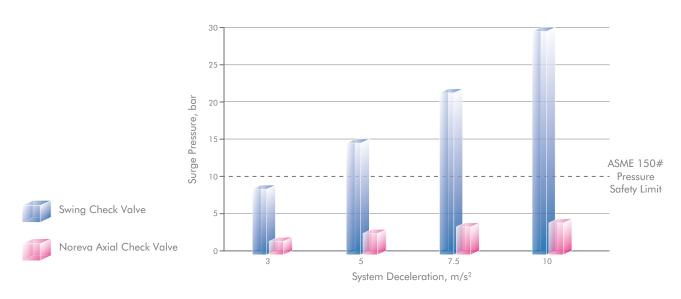
$$v_{Water,equivalent} = v_{Medium} \sqrt{\frac{\rho_{Medium}}{\rho_{Water}}}$$

ENGINEERING DATA The Phenomenon of Surge

Closing a valve against a moving body of fluid results in pressure pulses. These pulses become stronger as the magnitude of the velocity change increases. A common example of this is when a check valve closes following a pump trip. The pressure pulse can be high and is known as surge or water-hammer.

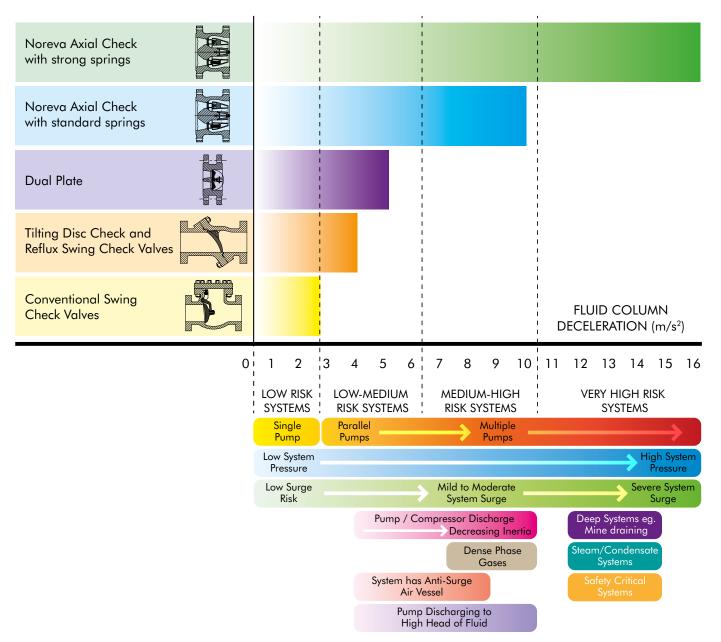

Whereas surge is the phenomenon of the advancing pressure wave, the term 'slam' relates more specifically to the valve itself, which can be the root cause of the surge. Valve slam occurs after a pump stops when the forward flow decelerates, reverses and accelerates back towards the pump. The check valve must close quickly before the reverse velocity is too high, in order to minimise the surge pressure and protect the line.

Surge Mitigation


Extensive research has been conducted (Prof. A.R.D. Thorley) into the dynamic response of all types of check valves. It has been found that slam can be reduced by improving the dynamic response of the valve. This is achieved by ensuring that:

- The disc has low inertia and friction
- The travel of the disc is short
- The closure of the disc is assisted with springs

By meeting these requirements, Noreva provides a range of non-slam check valves to suit up to the most severe of customer requirements.

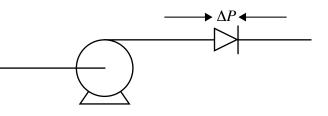


Valve Selection Comparison

ENGINEERING DATA Check Valve Selection based upon System Deceleration Characteristic

Check Valve Types

The above check valve selections and information are for guidance only. Please consult Noreva for Check Valve applications.


As fluid passes through a check valve there will be a drop in pressure. To maintain the flow-rate, the pump will need to compensate for this pressure loss by working harder.

ENGINEERING DATA

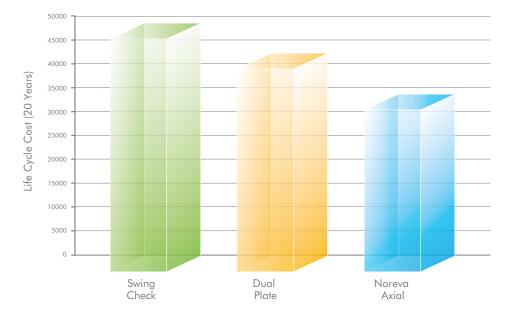
Total Life Cycle Costs

Today, energy cost is a prime concern for all plant manufacturers – the below analysis shows why a low pressure drop check valve should be considered for longterm economic benefit.

		SWING CHECK	DUAL PLATE	NOREVA AXIAL
Check Valve Size	mm	DN400	DN400	DN400
ΔP Co-efficient	ξ	1.21	1.05	0.83
Pipe Velocity, v	m/s	3.00	3.00	3.00
Flow Rate, Q	m³/s	0.342	0.342	0.342
Pressure Loss, ΔP	Ρα	5551	4817	3807
Pump Power, P	kW	2.5313	2.1966	1.7360
Energy Cost /Year	\$	2,430	2,109	1,667
Life Cycle Cost	\$	48,600	42,180	33,340

Area of Sch. 40 DN400 Pipe = 0.1140m²

Pipe velocity = Critical velocity (3.0m/s)


 $Q = Av = 0.1140 \times 3.0 = 0.342 m^3/s$

$$\Delta P = \frac{10000 \xi v^2}{2g}$$

$$P = \frac{Q}{1000} \cdot \frac{\Delta P}{\eta} \quad (\eta = \text{efficiency} = 0.75)$$

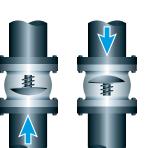
Cost = P x Cost/yr x hrs/yr* = Annual Cost x 20 years

Energy Cost = 0.12 \$/kWh 8000 hrs/year

Some swing check valves appear to offer higher Cv values and, therefore, lower pressure losses. However, such pressure losses are only achieved when the valve is 100% open which invariably requires a high fluid velocity – a consequence of which is high system pressure loss. Reducing the flowrate to address this problem causes the valve to partially close resulting in severe valve pressure drop, whereas the Noreva Axial Check Valves would still be 100% open and performing well.

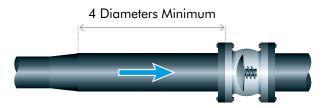
With swing check valves other issues arise in high velocity systems - such as slam and water hammer.

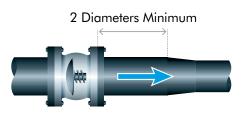
www.noreva.de

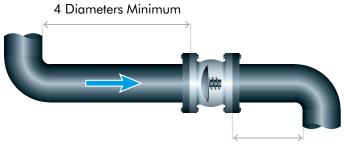

ENGINEERING DATA Best Practice Valve Installation

Piping components such as pumps, compressors, valves, reducers, bends, elbows create turbulence in a flow stream. To maximise the life of a Axial Check Valve, it should be installed in accordance with industrial best practice i.e. a sufficient distance from turbulence sources to ensure the valve is in fully developed flow. Examples of recommended best practice installation for Axial Check Valves are:

Horizontal Flow


Type Z solid disc shown. Also applicable to the N type Ring Disc.

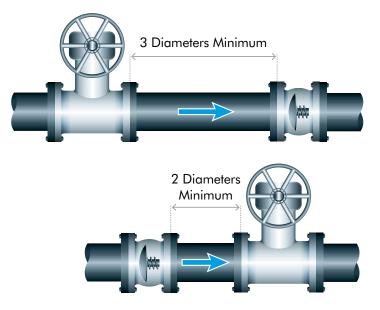



Vertical Flow

Valves suitable for vertical flow up and down.

For vertical flow please contact Noreva with process conditions.

2 Diameters Minimum


Check Valve should be installed a minimum of 4 diameters downstream of a reducer/ expander or bend to ensure flow at valve is fully developed and turbulence is minimised.

Check Valve should be installed a minimum of 2 diameters upstream of a reducer or bend to avoid choked flow, which would cause the valve to only partially open.

When installed near a throttling valve, the check valve should be installed a minimum of 3 diameters downstream, or 2 diameters upstream, of the throttling valve.

Check Valves can be close coupled upstream or downstream of non-throttling isolation valve (e.g. Full Port Ball Valves).

Note: Noreva Check Valves are not piggable Indicates direction of flow

Material Specifications

	ASTM	MATERIAL		I UTS	MIN Y			PREn			NC		L COMI	POSITI	ION		
	GRADE	DESCRIPTION	(Nmm	²) (ksi)	(Nmm ²)) (ksi)	IMPACT (J)	Δ	C	Cr	Ni	Mo	Cu	N	۷	W	Nb
	A216 WCB	Carbon Steel	485	70	250	36	-	-	0.23	-	-	-	-	-	-	-	-
GENERAL	A105	Forged Carbon Steel	485	70	250	36	-	-	0.23	-	-	-	-	-	-	-	-
PURPOSE	B148 C95800	Aluminium Bronze	600	87	250	36	-	-	-	-	4.5	-	79min	-	-	-	-
	A487 4C	Low Alloy Steel	620	90	415	60	-	-	0.20	0.5	0.5	0.25	-	-	-	-	-
	A352 LCB	Low Temp Carbon Steel	450	65	240	35	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
	A352 LCC	Low Temp Carbon Steel	485	70	275	40	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
LOW	A350 LF2	Low Temp Carbon Steel	485	70	250	36	27@ -46°C (-50°F)	-	0.23	-	-	-	-	-	-	-	-
TEMP	A352 LC3	Low Temp Alloy Steel	485	70	275	40	27@ -101°C (-150°F)	-	0.10	-	3.5	-	-	-	-	-	-
	A351 CF8M	Cryogenic Stainless Steel	485	70	205	30	80@ -190°C (-320°F)	27	0.08*	19	10	2.50	-	-	-	-	-
	A351 CF3M	Cryogenic Stainless Steel	485	70	205	30	80@ -196°C (-320°F)	27	0.03*	19	10	2.50	-	-	-	-	-
	A217 WC6	Chrome Molybdenum Steel	485	70	275	40	-	-	0.10	1.25	-	0.50	-	-	-	-	-
	A217 C5	Chrome Molybdenum Steel	620	90	415	60	-	-	0.10	5.0	-	0.50	-	-	-	-	-
HIGH TEMP	A217 C12	Chrome Molybdenum Steel	620	90	415	60	-	-	0.10	9.0	-	1.00	-	-	-	-	-
	A217 C12A	Chrome Molybdenum Steel	585	85	415	60		-	0.10	9.0	-	1.0	-	0.05	0.20	-	0.8
	A351 CF8M	Stainless Steel	485	70	205	30	-	27	0.08*	19	10	2.50	-	-	-	-	-
	A351 CF8C	Stainless Steel	485	70	205	30	-	20	0.08*	19	10	0.5*	-	-	-	-	8 x C
HARD	A217 CA15	Chrome Stainless Steel	620	90	450	65	-	-	0.10	13	-	-	-	-	-	-	-
WEARING	A487 CA6NM	Low Temp Chrome Stainless Steel	760	110	515	80	-	-	0.03	13	4.5	0.75	-	-	-	-	-
	A351 CF8M	Stainless Steel	495	70	205	30	-	27	0.08*	19	10	2.5	-	-	-	-	-
	A890 4A & A995 4A	Duplex 22% Cr	620	90	415	60	45 @ -40°C (-40°F)	34	0.03*	22	5.5	3	-	0.15	-	-	-
	A890 5A & A995 5A	Super Duplex 25% Cr	690	100	515	75	45 @ -50°C (-58°F)	-	0.03*	25	7.5	4.5	-	0.25	-	-	-
	A890 6A & A995 6A	Super Duplex 25% Cr	725	105	450	65	-	41	0.03*	25	7.5	3.5	0.75	0.25	-	0.75	-
CORROSION	A351 CK3MCuN	Super Austenitic	550	80	260	38	-	44	0.025*	20	18	6.5	0.75	0.2	-	-	-
RESISTANT	A494-M35-2	Monel	450	65	205	30	-	-	0.35*	-	BAL	-	30	-	-	-	0.5*
MATERIAL	A494 CU5MCuN	High Nickel 825	520	75	240	35	-	-	0.03	21	41	3	2	-	-	-	0.9
	A494 CW-6MC	High Nickel 625	485	70	275	40	-	-	0.03	21	62	9	-	-	-	-	3.5
	A494 CW-12MW	Hastelloy® C276	495	72	275	40	-	-	0.03	16	57	17	-	-	0.35	4	-
	A494 N-7M	Hastelloy® B2	525	76	275	40	-	-	0.03	1*	67	32	-	-	-	-	-
	A494 CX2MW	Hastelloy® C22	550	80	280	45	-	-	0.02*	22	56	13	-	-	0.3	3	-
	B367C2/B348Gr.2	Titanium	345	50	275	40	-	-	0.10*	-	-	-	-	-	-	-	-
* Max		I	I		I		I	I	I	I	I	I	I	I	I	1	1

 $\Delta \ \mathrm{PREn} = \mathrm{Pitting} \ \mathrm{Resistance} \ \mathrm{Equivalent} \ \mathrm{number}$

www.noreva.de

ASME B16.34 Pressure/Temperature Ratings

Maximum Non-Shock Working Pressure (Standard Class) Bar

		1	50			30	00			6	00	
Temperature	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217	A216 WCB	A352	A350	A217
°C	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6	/ A105	LCC	LF2	WC6
-29 to 38	19.6	19.8	19.6	19.8	51.1	51.7	51.1	51.7	102.1	103.4	102.1	103.4
50	19.2	19.5	19.2	19.5	50.1	51.7	50.1	51.7	100.2	103.4	100.2	103.4
100	17.7	17.7	17.7	17.7	46.6	51.5	46.6	51.5	93.2	103.0	93.2	103.0
150	15.8	15.8	15.8	15.8	45.1	50.2	45.1	49.7	90.2	100.3	90.2	99.5
200	13.8	13.8	13.8	13.8	43.8	48.6	43.8	48.0	87.6	97.2	87.6	95.9
250	12.1	12.1	12.1	12.1	41.9	46.3	41.9	46.3	83.9	92.7	83.9	92.7
300	10.2	10.2	10.2	10.2	39.8	42.9	39.8	42.9	79.6	85.7	79.6	85.7
350	8.4	-	8.4	8.4	37.6	-	37.6	40.3	75.1	-	75.1	80.4
400	6.5	-	6.5	6.5	34.7	-	34.7	36.5	69.4	-	69.4	73.3
450	-	-	-	4.6	-	-	-	33.7	-	-	-	67.7
500	-	-	-	2.8	-	-	-	25.7	-	-	-	51.5
538	-	-	-	1.4	- 1	-	-	14.9	-	-	-	29.8
		9	000			15	00			2	500	
Temperature	A216 WCB	9 A352	X00 A350	A217	A216 WCB	A352	00 A350	A217	A216 WCB	2 A352	A350	A217
Temperature °C	A216 WCB / A105				A216 WCB / A105				A216 WCB / A105			
	/ A105 153.2	A352 LCC 155.1	A350 LF2 153.2	A217 WC6 155.1	/ A105 255.3	A352 LCC 258.6	A350 LF2 255.3	A217 WC6 258.6	/ A105 425.5	A352	A350 LF2 425.5	A217 WC6 430.9
-29 to 38 50	/ A105 153.2 150.4	A352 LCC 155.1 155.1	A350 LF2 153.2 150.4	A217 WC6 155.1 155.1	/ A105 255.3 250.6	A352 LCC 258.6 258.6	A350 LF2 255.3 250.6	A217 WC6 258.6 258.6	/ A105 425.5 417.7	A352 LCC 430.9 430.9	A350 LF2 425.5 417.7	A217 WC6 430.9 430.9
°C -29 to 38 50 100	/ A105 153.2 150.4 139.8	A352 LCC 155.1 155.1 154.6	A350 LF2 153.2 150.4 139.8	A217 WC6 155.1 155.1 154.4	/ A105 255.3 250.6 233.0	A352 LCC 258.6 258.6 257.6	A350 LF2 255.3 250.6 233.0	A217 WC6 258.6 258.6 257.4	/ A105 425.5 417.7 388.3	A352 LCC 430.9 430.9 429.4	A350 LF2 425.5 417.7 388.3	A217 WC6 430.9 430.9 429.0
°C -29 to 38 50 100 150	/ A105 153.2 150.4 139.8 135.2	A352 LCC 155.1 155.1 154.6 150.5	A350 LF2 153.2 150.4 139.8 135.2	A217 WC6 155.1 155.1 154.4 149.2	/ A105 255.3 250.6 233.0 375.6	A352 LCC 258.6 258.6 257.6 250.8	A350 LF2 255.3 250.6 233.0 375.6	A217 WC6 258.6 258.6 257.4 248.7	/ A105 425.5 417.7 388.3 320.8	A352 LCC 430.9 430.9 429.4 418.1	A350 LF2 425.5 417.7 388.3 320.8	A217 WC6 430.9 430.9 429.0 414.5
°C -29 to 38 50 100 150 200	/ A105 153.2 150.4 139.8 135.2 131.4	A352 LCC 155.1 155.1 154.6 150.5 145.8	A350 LF2 153.2 150.4 139.8 135.2 131.4	A217 WC6 155.1 155.1 154.4 149.2 143.9	/ A105 255.3 250.6 233.0 375.6 219.0	A352 LCC 258.6 258.6 257.6 250.8 243.2	A350 LF2 255.3 250.6 233.0 375.6 219.0	A217 WC6 258.6 258.6 257.4 248.7 239.8	/ A105 425.5 417.7 388.3 320.8 365.0	A352 LCC 430.9 430.9 429.4 418.1 405.4	A350 LF2 425.5 417.7 388.3 320.8 365.0	A217 WC6 430.9 430.9 429.0 414.5 399.6
°C -29 to 38 50 100 150 200 250	/ A105 153.2 150.4 139.8 135.2 131.4 125.8	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0	/ A105 255.3 250.6 233.0 375.6 219.0 209.7	A352 LCC 258.6 258.6 257.6 250.8 243.2 231.8	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7	A217 WC6 258.6 258.6 257.4 248.7 239.8 231.8	/ A105 425.5 417.7 388.3 320.8 365.0 349.5	A352 LCC 430.9 430.9 429.4 418.1 405.4 386.2	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2
°C -29 to 38 50 100 150 200 250 300	/ A105 153.2 150.4 139.8 135.2 131.4 125.8 119.5	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0 128.6	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8 119.5	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0 128.6	/ A105 255.3 250.6 233.0 375.6 219.0 209.7 199.1	A352 LCC 258.6 258.6 257.6 250.8 243.2	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7 199.1	A217 WC6 258.6 258.6 257.4 248.7 239.8 231.8 214.4	/ A105 425.5 417.7 388.3 320.8 365.0 349.5 331.8	A352 LCC 430.9 430.9 429.4 418.1 405.4	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5 331.8	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2 357.1
°C -29 to 38 50 100 150 200 250 300 350	/ A105 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0 128.6 112.7	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0 128.6 120.7	/ A105 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8	A352 LCC 258.6 258.6 257.6 250.8 243.2 231.8	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8	A217 WC6 258.6 257.4 248.7 239.8 231.8 214.4 201.1	/ A105 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0	A352 LCC 430.9 430.9 429.4 418.1 405.4 386.2	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2 357.1 335.3
°C -29 to 38 50 100 150 200 250 300 350 400	/ A105 153.2 150.4 139.8 135.2 131.4 125.8 119.5	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0 128.6	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8 119.5	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0 128.6 120.7 109.8	/ A105 255.3 250.6 233.0 375.6 219.0 209.7 199.1	A352 LCC 258.6 258.6 257.6 250.8 243.2 231.8	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7 199.1	A217 WC6 258.6 257.4 248.7 239.8 231.8 214.4 201.1 183.1	/ A105 425.5 417.7 388.3 320.8 365.0 349.5 331.8	A352 LCC 430.9 430.9 429.4 418.1 405.4 386.2	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5 331.8	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2 357.1 335.3 304.9
°C -29 to 38 50 100 150 200 250 300 350 400 450	/ A105 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0 128.6 112.7	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0 128.6 120.7 109.8 101.4	/ A105 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8	A352 LCC 258.6 258.6 257.6 250.8 243.2 231.8 214.4	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8	A217 WC6 258.6 257.4 248.7 239.8 231.8 214.4 201.1 183.1 169.0	/ A105 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0	A352 LCC 430.9 430.9 429.4 418.1 405.4 386.2 257.1	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2 357.1 335.3 304.9 281.8
-29 to 38 50 100 150 200 250 300 350 400	/ A105 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7	A352 LCC 155.1 155.1 154.6 150.5 145.8 139.0 128.6 112.7	A350 LF2 153.2 150.4 139.8 135.2 131.4 125.8 119.5 112.7 104.2	A217 WC6 155.1 155.1 154.4 149.2 143.9 139.0 128.6 120.7 109.8	/ A105 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8	A352 LCC 258.6 257.6 250.8 243.2 231.8 214.4 -	A350 LF2 255.3 250.6 233.0 375.6 219.0 209.7 199.1 187.8 173.6	A217 WC6 258.6 257.4 248.7 239.8 231.8 214.4 201.1 183.1	/ A105 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0 289.3	A352 LCC 430.9 430.9 429.4 418.1 405.4 386.2 257.1	A350 LF2 425.5 417.7 388.3 320.8 365.0 349.5 331.8 313.0 289.3	A217 WC6 430.9 430.9 429.0 414.5 399.6 386.2 357.1 335.3 304.9

			150			3	00				500	
	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494
Temperature	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC
°C				625 ALLOY*	CF3M			625 ALLOY*	A351			625 ALLOY*
-29 to 38	19.0	19.0	20.0	20.0	49.6	49.6	51.7	51.7	99.3	99.3	103.4	103.4
50	18.4	18.7	19.5	19.5	48.1	48.8	51.7	51.7	96.2	97.5	103.4	103.4
100	16.2	17.4	17.7	17.7	42.2	45.3	50.7	51.5	84.4	90.6	101.3	103.0
150	14.8	15.8	15.8	15.8	38.5	42.5	45.9	50.3	77.0	84.9	91.9	100.3
200	13.7	13.8	13.8	13.8	35.7	39.9	42.7	48.3	71.3	79.9	85.3	96.7
250	12.1	12.1	12.1	12.1	33.4	37.8	40.5	46.3	66.8	75.6	80.9	92.7
300	10.2	10.2	10.2	10.2	31.6	36.1	38.9	42.9	63.2	72.2	77.7	85.7
350	8.4	8.4	-	8.4	30.3	34.8	-	40.3	60.7	69.5	-	80.4
400	6.5	6.5	-	6.5	29.4 28.8	33.9	-	36.5	58.9 57.7	67.8	-	73.3
450 500	4.6 2.8	4.6 2.8	-	4.6 2.8	20.0	33.5 28.2	-	33.7 28.2	56.5	66.9 56.5	-	67.7 56.5
538	2.0 1.4	2.0 1.4	-	2.0 1.4	25.2	26.2	-	26.2	50.0	50.0	-	50.0
220	1.4		-	1.7	ZJ.Z		-	ZJ.Z	J0.0		-	JU.U
	1051 (501)		900	1.10.1	1051 6501		500	1404	1051 65011		500	1404
- .	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494	A351 CF8M	A351	A995 4A	A494
Temperature	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC	/ CF3M	CF8C	A995 6A	CW6MC
°C				625 ALLOY*				625 ALLOY*				625 ALLOY*
-29 to 38	148.9	148.9	155.1	155.1	248.2	248.2	258.6	258.6	413.7	413.7	430.9	430.9
50	144.3	146.3	155.1	155.1	240.6	243.8	258.6	258.6	400.9	406.4	430.9	430.9
100	126.6	135.9	152.0	154.6	211.0	226.5	253.3	257.6	351.6	377.4	422.2	429.4
150	115.5	127.4	137.8	150.6	192.5	212.4	229.6	250.8	320.8	353.9	382.7	418.2
200	107.0 100.1	119.8 113.4	128.0 121.4	145.0	178.3	199.7	213.3	241.7	297.2	332.8	355.4	402.8
070		11.54	121.4	139.0	166.9	189.1	202.3	231.8	278.1	315.1	337.2	386.2
250					1501	100 /						
300	94.9	108.3	116.6	128.6	158.1	180.4	194.3	214.4	263.5	300.7 280.6	323.8	357.1
300 350	94.9 91.0	108.3 104.3	116.6 -	128.6 120.7	151.6	173.8	-	201.1	252.7	289.6	-	335.3
300 350 400	94.9 91.0 88.3	108.3 104.3 101.7	116.6	128.6 120.7 109.8	151.6 147.2	173.8 169.5		201.1 183.1	252.7 245.3	289.6 282.6		335.3 304.9
300 350	94.9 91.0	108.3 104.3	116.6 - -	128.6 120.7	151.6	173.8		201.1	252.7	289.6	-	335.3

* Extrapolations from materials with similar CR/NI/MO content

ENGINEERING DATA Large Diameter Check Valves

Noreva specialises in the manufacture of large diameter valves being capable of manufacturing its Axial Check Valve in sizes to 88" in all materials and in all relevant pressure classes.

Applicable Flange Standards

- 26" 60": ASME B16.47 Series A ASME B16.47 Series B
- 66" 88": ASME/AWWA Class B, D, E & F (Flat Face flanges) Taylor Forge (Raised Face flanges) or Customer agreed flange design

68" 300# Nozzle Check Valve Type NBF

Large diameter check valves are utilised throughout the hydrocarbon, energy and process industries in a wide variety of applications. Noreva Check Valves are in service in applications ranging from potable water and seawater to hydrocarbon gas and LNG in materials such as Carbon Steel, Aluminium Bronze, Duplex Stainless Steel and CF8M Stainless Steel.

Typical Noreva Large Diameter Check Valve Applications

- Pipelines: Extensive use in the compressor stations and pumping stations of many of the world's crosscountry and country-to-country pipelines. Made for the transportation of energy and traversing thousands of kilometres, by their nature these pipelines are critical
 Noreva Check Valves are selected for their reliability and high performance.
- Ethylene Centrifugal Compressor Trains: Employed on the discharge of each compressor stage, Noreva Check Valves prevent any potential for backflow to protect compressors against reverse rotation and over pressurisation and the consequent mechanical damage.
- LNG: Especially used within the liquefaction plants, large diameter Noreva Check Valves are in service at -161°C

72" 150# Nozzle Check Valve Type NKF

• Seawater intake line and seawater discharge pumps: Used on the discharge of the pumps, Noreva Check Valves protect the pumps against reverse rotation and the consequential mechanical damage.

ENGINEERING DATA Cryogenic Valves

Cryogenic testing is conducted by immersing the valve in Liquid Nitrogen to cool to the desired temperature which is monitored and recorded at a number of locations on the valve, both internally and externally. Once temperature has stabilised, the pressure test commences using pure Helium (for low temperature testing: Nitrogen or 99% Nitrogen / 1% Helium) as the test medium. Pressure can be increased in increments and seat leakage measured at each increment. Test pressure depends on the rating of the valve and the maximum is limited by the Cold Working Pressure as designated by ASME B16.34.

Seat leakage is measured with calibrated flow meters. Valve Inspection and Test Standard API 598 defines the maximum permissible leakrate with air or inert gas at ambient temperature conditions as 700cc/minute/inch bore diameter.

Following the seat leak test, valve body integrity is tested whereby the entire body cavity is pressurised and a shell leak detection test carried out using a Mass Spectrometer.

Noreva has supplied to the majority of the world's most prestigious LNG (Liquefied Natural Gas) projects, particulary to the export liquefaction plants but also to the LNG tanker carriers and the reception/regasification terminals. The vast majority of valves are of 316 Stainless Steel construction for use in Liquefied Natural Gas service at a temperature of -161°C. Additionally, a large number of valves are of LTCS body construction for low temperature service applications.

Cryogenic & High Pressure Gas Testing Facility

Goodwin has over 25 years of in-house cryogenic testing experience. Having its own cryogenic and high pressure gas test facility enables Goodwin to test valves in-house as large as 72" at temperatures down to -196°C and pressures to 15000psig/1035barg.

Typical Test Procedures BS 6364 Shell SPE 77/200

Acceptance Standards Seat Leakage: API598 - 700 cc/min/inch bore ISO 5208 Rate E

Outside Leakage (body): Zero

18" 300# Nozzle Check Valve Type NKF on Cryogenic Test

Certification & Approvals

	E CONFORMITE SANITAIRE
Conformament & families ou 20 005/5077	real 1987 modifie at a la circularie du Ministère de la Banté Lix ^a 871 de 26 reventere 2082
Coordonates du demandeur d'ACE :	Familie d'accessaires concernée :
NORENX Geelen Nochelener Weg 16 41585 Altrichergisebarh Altridgee	Panellie das Clapets Anti-retour & Cotps Tuylos
Adaptation dativitie par	EUROPINS IPL Nove
a la date de 19 décembre 2011	Banan
N° de dossier afribuit par la laboratura 11	Chaf de Laborature des Elsans Mobrieux
Accessoires coursels per TACS :	
	ance MRV 29, 250 PN 18
Accessions de la familie Materinana NIV-2 pour les lutilies (en mei) 000-1100-1200-1200-1400 Materinana NIV-260 pour les talles sen mei Diot-1100-1000-1400 Materinana NIV-2 pour les talles (en mei Materinana NIV-2 pour les talles (en mei Materinana NIV-2 pour les talles (en mei materinana NIV-2 201 des talles (en mei materinana NIV-2 201 des talles (en mei	290 - 300 - 300 - 408 - 410 - 508 - 600 - 110 - 800 - 500 - 298 - 500 - 500 - 408 - 400 - 500 - 400 - 700 - 400 - 500 - 298 - 50 - 40 - 400 - 400 - 500 - 400 - 700 - 400 - 500 - 51 - 50 - 40 - 48 - 40 - 100 - 124 - 140 - 178 - 200 - 248 - 500
Annexamine de la familie Maria - Maria - Mar	285 - 305 - 305 - 402 - 402 - 505 - 505 - 505 - 505 - 2 285 - 305 - 505 - 402 - 402 - 505 - 505 - 505 - 505 - 28 - 30 - 405 - 403 - 405 - 505 - 505 - 505 - 505 - 28 - 32 - 40 - 46 - 40 - 100 - 126 - 566 - 177 - 200 - 206 - 300 - 28 - 32 - 44 - 46 - 86 - 505 - 536 - 505 - 175 - 206 - 204 - 50 - 21 - 21 - 41 - 40 - 100 - 126 - 100 - 113 - 100 - 206 - 200 - 20 - 20 - 42 - 40 - 40 - 100 - 126 - 100 - 113 - 113 - 206 - 200 - 200 - 20 - 201 - 41 - 40 - 40 - 100 - 126 - 100 - 113 - 113 - 200 - 2
Anomanium in in Annola (Materiana Mini and Shaffan Levin Mini 1905 - 1912 - 1903 - 1905 - 1905 - 1905 Manarasa Mini and Juno Ina Mini and Anno 1905 - 1905 - 1905 - 1905 - 1905 - 1905 Mini and Mini and Mini and Mini and Mini and Mini and	200 - 200 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 200 - 200 - 200 - 400 - 400 - 400 - 400 - 700 - 400 - 200 - 200 - 200 - 400 - 400 - 400 - 700 - 400 - 200 - 200 - 200 - 400 - 400 - 400 - 400 - 400 - 200 - 200 - 200 - 200 - 400 - 400 - 400 - 400 - 400 - 200 - 200 - 200 - 200 - 400 - 400 - 400 - 400 - 400 - 400 - 200 - 40000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 40000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 40000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 40000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 4000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 4000 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 4000 - 400
Ancessive as a fundal Materiana Mila and Mala and Mala and Mala 1960 - 1961 - 1960 - 1960 - 1960 - 1960 Malancess Mila and Anna and Anna Anna Anna Malancess Mila and Anna and Anna Anna Malancess Mila and Anna and Anna Anna Malancess Mila and Anna Anna Anna Malancess Mila and Anna Anna Anna Mala and Anna Anna Anna Anna Anna Anna Mala and Anna Anna Anna Anna Anna Anna Mala and Anna Anna Anna Anna Anna Anna Anna	201 304 400

	REPTOORDAT RANTETETING
FAL	N TONU COMMON BOOMS
CUL	Const RU N 0021333
"Taxetrpoaset", Apper 1 ph Khuo Reservan, a 20	OUDBROOM IN CORPOREMENT STRATUM COO MINIMUM CONTRACT AND A CONTRAC
Koartawane, Appel: 119- prt 6.75cmina, 7/10, cm	6.1 organismentel districtionensichen inflightet Treategoarienen Organismente 180, K. Moosa, etc. S. Fatterein, 1710, USJ, TOM D. K. KOADD, 110180, A. Moosa, 32, TOM IX KOMDO (dammenoum), OFFH 1117746/05/108, 9, 4mic (1705420017), Ermit internationeledgilatus
	EVA Gr6Hs, Apper: Holistener Weg BI, 41189 Minchangadauh, Gernary 625, Reis: +49210120008
DN or 25 ap 300, PN ps	e discrement personnentment, service Z., CNI (+ 2) pp 302, FM pp 2002, MIX /2 2000, N., CNI (+ 100 pp 2000, FM pp 2000, MIX /2 CMI (+ 200 pp 2000, FM pp 1200, FM pp 150, MIX /2 CMI (+ 200 pp 200), FM pp 1510, CApatibised surveys
NOA TH ROA TONIE 20	0 810 8
спответствит ги 10 бектисноги мали	BOBAINENT succession personnen Taxonovers canon TP TC 0100011 n e doorganisme"
avanuas cocromose top sometavait Nr 58013 o	IRAOCHORAUEREBOOHINGHI Gaurasheath Br. KDJ-5.001-80. doi: norsiguitte An TTS (2013) or (36.82.2013), represente aspectationener 8.08.82.813, r. Monantemente autopartique Telefonse-Ten ² OOO VIX. enterner representative POOC RU 2001.21XT18 or 23.12.3010 pp. 23.1.2.001
	DIRCHTMAQUERCTS selectorer ledes of paqueent or parents masterer a s representational geoperatures. DI 2013 DI 12 DI 2018 DIRCHTMAND
100 . 2	Intrast on contradictions (Towns Downs Street

NOZZLE CHECK VALVES Ordering Instructions

EXAMPLE

VALVE	TYPE	CONNECTION STYLE		VALVE SIZE			ANSI / API / PN Pressure rating	6	FLANGE / Connection	END CONNECTION
N	К	F	3	2	i	0	6	0	Α	R

	VALVE TYPE		VALVE SIZE		VALVE SIZE		PRESSII	RE RATING		FLANGE / CONNECTION
FIG	TYPE		DN SIZE	FIG	IN SIZE	FIG		SURE RATING	FIG	STANDARD
NB	NRV-B		14 mm	001	1/2 inch	Hli	FIG	RATING	A	ASME B16.5 / 16.47 Ser. A /
ND	NRV-B (API 6	D F/F)	25 mm	002	1 inch	01i	012	ANSI 125		MSS SP-44
NK	NRV-BK		32 mm	003	1 1/4 inch	1Qi	015	ANSI 150	F	ASME B16.47 Series B
NP	NRV-B with Positio	n Indicator	40 mm	004	1 1/2 inch	1Hi	030	ANSI 300	W	AWWA C207
ZS	NRV-ZSK		50 mm	005	2 inch	02i	060	ANSI 600	D	DIN EN 1092-1/2
ZB	NRV-ZK		65 mm	006	2 1/2 inch	2Hi	090	ANSI 900	Р	BS 4504
ZD	NRV-ZK (API 6		80 mm	800	3 inch	03i	150	ANSI 1500	м	BS 1560
ZO	NRV-Z	5111	100 mm	010	4 inch	04i	250	ANSI 2500	K	AS 4087
ZL	NRV-Z (DIN	F/F)	125 mm	012	5 inch	05i	300	ANSI 2500 API 3000	L	AS 2129
NG	NRV-2 (DIN	1,11	150 mm	015	6 inch	06i			N	NORSOK L-005 / VECTOR
NR	NRV-0		200 mm	020	8 inch	08i	500	API 5000	I	API 6A / ISO 10423
			250 mm	025	10 inch	10i	100	API 10000	В	Butt Weld End to ASME
KO	NRV-K	е I	300 mm	030	12 inch	12i	DDECCU	RE RATING		B16.25
[]X	To be Specif	lied	350 mm	035	14 inch	14i			E	Butt Weld End to EN 12627
_			400 mm	040	16 inch	16i		URE RATING	R	Butt Weld End to GL 214-501
	CONNECTION STYL		450 mm	045	18 inch	18i	FIG	RATING	G	Grayloc
FIG	CONNECTI		500 mm	050	20 inch	20i	P02	PN 2,5	Т	Techlok
F	Flanged		550 mm	055	22 inch	22i	P06	PN 6	С	Screwed / Threaded End
W	Weld End	d	600 mm	060	24 inch	24i	P10	PN 10	S	SANS 1123
L	L Fully Lugged		650 mm 700 mm	065 070	26 inch 28 inch	26i 28i	P14	PN 14	X	To be Specified
0	Wafer		700 mm 750 mm	070	30 inch	201 30i	P16	PN 16		
Т	Butt Weld + Tr	ansition	800 mm	080	30 inch	32i	P21	PN 21		
Н	Hub Ende	ed	850 mm	085	34 inch	34i	P25	PN 25		END CONNECTION
S	Screwed E	nd	900 mm	090	36 inch	36i	P35	PN 35	FIG	STANDARD
٧	Compact Fla	inge	950 mm	095	38 inch	38i	P40	PN 40	R	Raised Face Rz 16-25 / Form B2
Х	To be Speci	fied	1000 mm	100	40 inch	40i	P48	PN 48	В	Raised Face Rz 16-63 / Form
			1050 mm	105	42 inch	42i	P63	PN 63	D	B + B1
	VALVE SIZE		1100 mm	110	44 inch	44i	P64	PN 64	J	Ring Groove
In	ANSI, AWWA		1150 mm	115	46 inch	46i	N10	PN 100	F	Flat Face Rz 16-25
mm	JIS & PN Rat		1200 mm	120	48 inch	48i	N16	PN 160	A	Flat Face Rz 16-63 / Form A
	515 @ 14 10	iiigs	1250 mm	125	50 inch	50i	N25	PN 250	0	O-Ring Groove / Form H
			1300 mm	130	52 inch	52i	N32	PN 320	D	Small/Large Groove / Form D
	VALVE SIZE		1350 mm	135	54 inch	54i	N35	PN 350	C	Small/Large Tongue / Form C
	API SIZE	FIG	1400 mm	140	56 inch	56i	N40	PN 400	E	Small/Large Male / Form E
	13/16 inch	1Xi	1450 mm	145	58 inch	58i	PXX	Special	M	Small/Large Female / Form F
	2 1/16 inch 2Si		1500 mm	150	60 inch	60i			G	O-Ring Vorsprung (Form G)
	2 9/16 inch 2Xi		1550 mm	155	62 inch	62i			W	Weld End
	4 1/16 inch 4Si		1600 mm	160	64 inch	64i				
	5 1/8 inch 5Ei		1650 mm	165	66 inch	66i			Н	Hub Ended
	7 1/16 inch	7Si	1700 mm	170	68 inch	68i			V	Compact End
	9 inch 09i		1800 mm	180	72 inch	72i			-	N/A
	11 inch	11i	1900 mm	190	76 inch	76i			X	To be Specified
	13 5/8 inch	13x	1950 mm	195	78 inch	78i				
	16 3/4 inch	16x	2000 mm	200 210	80 inch	80i 84i				
	18 3/4 inch	18x	2100 mm		84 inch					
		107	2200 mm	220	88 inch	88i				

2400 mm

21 1/4 inch

21Q

240

96 inch

96i

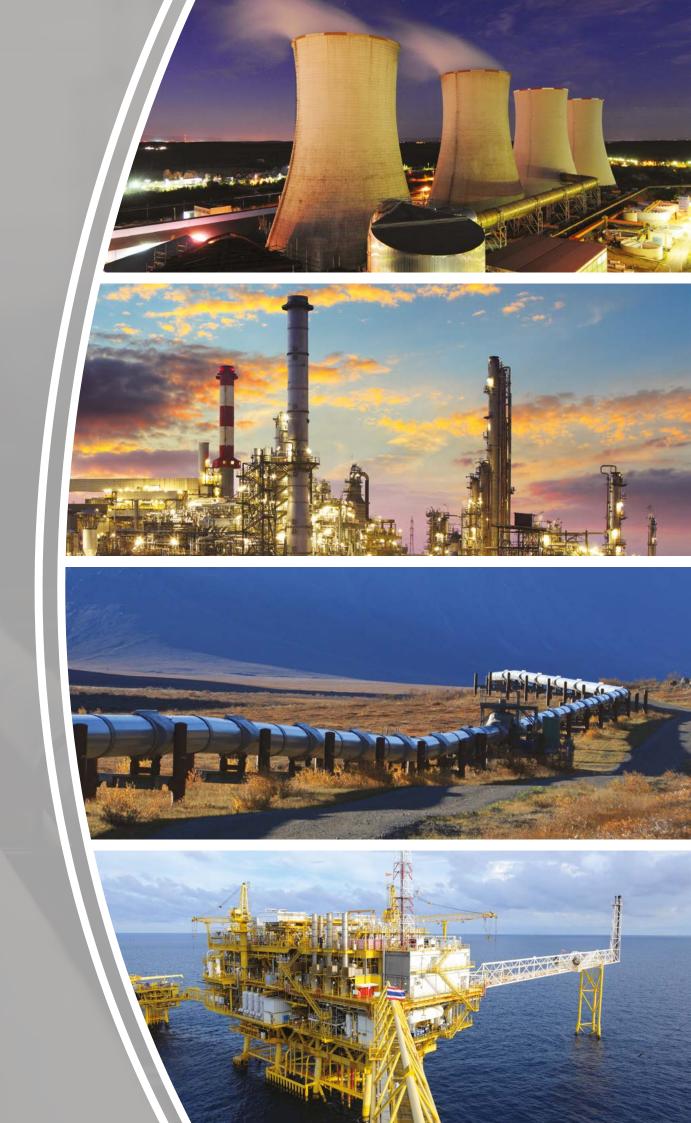

MATERIAL	BODY SEAT	DISC MATERIAL	DISC SEAT	SPRING MATERIAL	SPRING TORQUE
C	U	S	Р		2

FIG	MATERIAL	SPECIFICATION
A	Nickel Aluminium Bronze	BS EN 1982 CC333G / ASTM B148 C95800
D	Ductile Iron	ASTM A395 GR 60-40-18
W	German Ductile Iron	EN-GJS-400-15
W C	Carbon Steel	ASTM A216 WCB / ASTM A105
P	German Carbon Steel	GP240GH+N (1.0619) / P250GH+N (1.0460)
L	Low Temp Carbon Steel	ASTM A352 LCB [Type: GS-Ck 24 (1.1156)]
0	Low Temp Carbon Steel	ASTM A352 LCC / ASTM A350 LF2
U		[Type: G20Mn5+N (1.6220) / P355NH (1.0565)]"
K	Low Alloy Steel	ASTM A487 Grade 4C / AISI 4130 [Type: 25CrMo4 (1.7218)]
E	410 Stainless Steel	"ASTM A217 CA15 / ASTM A182 F6a Class 2 [Type: G-X8CrNi13 (1.4008) / X12Cr13 (1.4006)]"
N	9% Cr Steel	ASTM A217 C12 / ASTM A182 F9
G	Low Temp 13% Cr 4% Ni	ASTM A352 CA6NM
S	316 Stainless Steel	"ASTM A351 CF8M / ASTM A182/A479 F316 [Type: GX5CrNiMo19-11-2 (1.4408) / X5CrNiMo17-12-2 (1.4401)]"
3	German 316Ti Stainless Steel	GX5CrNiMoNb19-11-2 (1.4581) / X6CrNiMoTi17-12-2 (1.4571)
F	316L Stainless Steel	"ASTM A351 CF3M / ASTM A182/A479 F316L [Type: GX2CrNiMo19-11-2 (1.4409) / X2CrNiMo17-12-2 (1.4404)]"
Y	347 St. Steel (High Temp)	"ASTM A351 CF8C / ASTM A182 F321 [Type: X6CrNiTi18-10 (1.4541)]"
Q	22% Chrome Duplex	"ASTM A890/A995 4A / ASTM A182 F51 [Type: GX2CrNiMoN22-5-3 (1.4470) / X2CrNiMoN22-5-3 (1.4462)]"
В	25% Chrome Super Duplex	J93372 / ASTM A995 1B (CD4MCuN) (WE)
R	Ferralium 255-3SC ®	Ferralium
Z	25% Chrome Super Duplex	"ASTM A890/A995 6A / ASTM A182 F55 [Type: X2CrNiMoCuWN25-7-4 (1.4501)]"
H	Alloy 825	"ASTM A494 CU5MCuC / ASTM B564 UNS N08825 [Type: NiCrMo (2.4858)]"
I	Alloy 625	"ASTM A494 CW6MC / ASTM B564 UNS N06625 [Type: NiCr22Mo9Nb (2.4856)]"
۷	Avesta 254 SMO ®	ASTM A351 CK3MCuN / ASTM A182 F44
J	Hastelloy C276 ®	ASTM A494 CW12MW (WE)
М	Monel 400	ASTM A494 M35-1 / ASTM B564 UNS N04400
T	Titanium	ASTM B367 C2 / B381 F2 / B384 GR2
U	Stellite ®	Stellite 6
1	Chromium Molybdenum Steel	ASTM A217 GR WC9
2	3.5% Nickel Steel	ASTM A352 LC3
4	431 Stainless Steel	[Type: GX22CrNi17 (1.4059) / AISI 431 [Type: X17CrNi16-2 (1.4057)]
5	Alloy 20	ASTM A351 CN7M
6	317 Stainless Steel	ASTM A351 CG8M
7	Carbon Molybdenum Steel	ASTM A352 LC1 [Type: G18Mo5 (1.5422)]
8	Ni Resist Iron	ASTM A439 D2
9	High Temp CrMo Steel	"ASTM A217 WC6 / ASTM A182 F11 Class 2
X	To Be Specified	To Be Specified

BODY SEAT / DISC SEAT OVERLAY MATERIAL						
FIG	MATERIAL	OPERATING [•]	TEMP RANGE			
		°F	°C			
Р	Same as Body / Disc	Same as E	Body / Disc			
E	410 Stainless Steel	-20 to 1000	- 29 to 538			
S	316 Stainless Steel	-425 to 1000	-254 to 538			
F	316L Stainless Steel	-425 to 850	-254 to 455			
3	"307 Stainless Steel / G/W 18 8 Mn (1.4370)"	-321 to 1112	-196 to 600			
G	17-4 PH	-40 to 800	-40 to 427			
1	Inconel 625	-321 to 1500	-196 to 815			
М	Monel 400	-321 to 900	-196 to 482			
U	Stellite No 6 ®	-450 to 1500	-267 to 815			
9	Stellite No 21 ®	-450 to 1500	-267 to 815			
٧	Viton A ®	-40 to 400	-40 to 204			
W	"Viton B® Anti-Explosive Decompression FR58 90"	4 to 392	-20 to 200			
N	Buna-N ®	-22 to 250	-30 to 121			
T	Neoprene ®	-40 to 250	-40 to 121			
K	Teflone ®	-200 to 450	-129 to 232			
D	EPDM	-14 to 230	-10 to 110			
L	Lined Body to Specification	100% Interna	lly Lined Body			
X	To b	e Specified / Seat Ring				

SPRING MATERIAL					
FIG	MATERIAL	RECOMMENDED MAX TEMP			
		°F	°C		
S	316 Stainless Steel	[Type: X6CrNiMoTi17-12-2	(1.4571) }		
1	Inconel X750 ®	1000	537		
T	Inconel 625 ®	1000	537		
М	Monel K500 ®	400	204		
L	Inconel 718 ®	1022	550		
E	Elgiloy	842	450		
9	Titanium	662	350		
J	Hastelloy	842	450		
Х		To Be Specified			

	SPRING TORQUE				
FIG	STANDARD	VELOCITY			
-	Undefined	Undefined			
0	Spring No.0	1,0 m/s			
1	Spring No.1	1,5 m/s			
2	Spring No.2	2,0 m/s			
3	Spring No.3	2,5 m/s			
4	Spring No.4	3,0 m/s			
Х	Special	Special			

www.noreva.de

NOREVA GmbH

Düsenrückschlagventile, Hocksteiner Weg 56, D - 41189 Moenchengladbach (Germany) Telephone: +49 (0) 21 66 / 12 686 - 0 Fax: +49 (0) 21 66 / 12 686 - 66 EMail: info@noreva.de